alexa JNK-Mediated SREBP-2 Processing by Genistein up-regulates LDLR Expression in HepG2 Cells
ISSN: 2155-9600

Journal of Nutrition & Food Sciences
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

JNK-Mediated SREBP-2 Processing by Genistein up-regulates LDLR Expression in HepG2 Cells

Seung-Min Lee*, Hye Won Han and Yunhye Kim

Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, South Korea

*Corresponding Author:
Seung-Min Lee
Department of Food and Nutrition
College of Human Ecology
Yonsei University, Seoul
South Korea
Tel: 82-2-2123- 3118
Fax :+82-2-2123-3115
E-mail: [email protected]

Received date: August 05, 2014; Accepted date: August 29, 2014; Published date: September 05, 2014

Citation: Lee SM, Han HW, Kim Y (2014) JNK-Mediated SREBP-2 Processing by Genistein up-regulates LDLR Expression in HepG2 Cells. J Nutr Food Sci 4:308. doi: 10.4172/2155-9600.1000308

Copyright: © 2014 Lee SM, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.



Genistein has been implicated for its anti-atherogenic effects. We investigated the molecular mechanisms behind the impact of genistein on expression of LDLR, the receptor for LDL-cholesterol, and related signaling pathways in HepG2 cells. Genistein increased mRNA and protein levels of LDLR in a time-dependent manner. In order to find out the effects of genistein on the transcriptional levels, a luciferase reporter construct containing LDLR promoter (pLDLR-luc) was constructed and examined for its response to genistein. Genistein increased the reporter activity but failed to increase transcriptional activity when sterol-regulatory element (SRE) in the LDLR promoter was deleted. Genistein increased nuclear translocation of SREBP-2 and DNA binding activity of SREBP-2 to LDLR promoter by chromatin immunoprecipitation assay (CHIP). Pre-treatment of 4-(2-aminoethyl) benzenesulfonyl fluoride (AEBSF), serine protease inhibitor, prevented the effects of genistein while brefeldin A causing the fusion of the endoplasmic reticulum (ER) and the Golgi apparatus did not, suggesting that genistein may have an effect on SREBP-2 trafficking from the ER to the Golgi apparatus. Insig-1 protein levels were not changed by genistein. Among mitogen-activated protein kinases (MAPK), genistein phosphorylated JNK but not p38 and ERK signals. JNK inhibitor (SP600126) abolished genistein-stimulated levels of LDLR and nuclear SREBP-2. To minimize the effects of c-Jun, a transcription factor activated by JNK signals, a truncated LDLR luciferase construct that contained SRE but lacked the c-jun putative binding site was constructed. Genistein still was able to boost the transcriptional activity of the truncated LDLR construct. All the genistein effects were abolished by the addition of cholesterol. In conclusion, genistein has the anti-atherogenic effects by activating JNK signals and SREBP-2 processing, which is followed by up-regulation of LDLR. However, the beneficial effects of genistein could be affected by the amount of cellular cholesterols.

Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals


[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version