alexa k-Means Walk: Unveiling Operational Mechanism of a Popular Clustering Approach for Microarray Data
ISSN: 0974-7230

Journal of Computer Science & Systems Biology
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

k-Means Walk: Unveiling Operational Mechanism of a Popular Clustering Approach for Microarray Data

Victor Chukwudi Osamor*, Ezekiel Femi Adebiyi and Ebere Hezekiah Enekwa

Department of Computer and Information Sciences (Bioinformatics Unit), College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria

*Corresponding Author:
Victor Chukwudi Osamor
Department of Computer and Information Sciences (Bioinformatics Unit)
College of Science and Technology
Covenant University, Ota, Ogun State, Nigeria
E-mail: [email protected], [email protected]

Received date: December 16, 2012; Accepted date: December 26, 2012; Published date: December 28, 2012

Citation: Osamor VC, Adebiyi EF, Enekwa EH (2013) k-Means Walk: Unveiling Operational Mechanism of a Popular Clustering Approach for Microarray Data. J Comput Sci Syst Biol 6:035-042. doi:10.4172/jcsb.1000098

Copyright: © 2013 Osamor VC, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License,which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.



Since data analysis using technical computational model has profound influence on interpretation of the final results, basic understanding of the underlying model surrounding such computational tools is required for optimal experimental design by target users of such tools. Despite wide variation of techniques associated with clustering, cluster analysis has become a generic name in bioinformatics and is seen to discover the natural grouping(s) of a set of patterns, points or sequences. The aim of this paper is to analyze k-means by applying a step-by-step k-means walk approach using graphic-guided analysis to provide clear understanding of the operational mechanism of the k-means algorithm. Scattered graph was created using theoretical microarray gene expression data which is a simplified view of a typical microarray experiment data. We designate the centroid as the first three initial data points and applied Euclidean distance metrics in the k-means algorithm leading to assignment of these three data points as reference point to each cluster formation. A test is conducted to determine if there is a shift in centroid before the next iteration is attained. We were able to trace out those data points in same cluster after convergence. We observed that, as both the dimension of data and gene list increases for hybridization matrix of microarray data, computational implementation of k-means algorithm becomes more rigorous. Furthermore, the understanding of this approach will stimulate new ideas for further development and improvement of the k-means clustering algorithm especially within the confines of the biology of diseases and beyond. However, the major advantage will be to give improved cluster output for the interpretation of microarray experimental results, facilitate better understanding for bioinformaticians and algorithm experts to tweak k-means algorithm for improved run-time of clustering.


Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals


[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version