alexa Machine Learning Algorithms Dramatically Improve the Ac
ISSN: 2161-105X

Journal of Pulmonary & Respiratory Medicine
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Machine Learning Algorithms Dramatically Improve the Accuracy and Time to Diagnosis of Pulmonary Embolisms

Youqub Kashif1, Mian Zayn2* and Leventhal Gary3

1Pulmonary and critical care fellow, Mayo Clinic, Scottsdale Arizona, USA

2Research Intern, Atlantis Research Institute, USA

3Data Analytics and Machine Learning, San Francisco, CA, USA

*Corresponding Author:
Mian Zayn
Atlantis Research Institute, Atlantis Health Systems
390 Enterprise, CT Bloomfield, Michigan, United States
Tel: 4802540478
E-mail: fsm456@hotmail.com

Received date: February 11, 2017; Accepted date: May 23, 2017; Published date: May 26, 2017

Citation: Kashif Y, Zayn M, Gary L (2017) Machine Learning Algorithms DramaticallyImprove the Accuracy and Time to Diagnosis of Pulmonary Embolisms. J Pulm Respir Med 7:408. doi: 10.4172/2161-105X.1000408

Copyright: © 2017 Kashif Y, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 

Abstract

Acute pulmonary embolism is a common diagnostic challenge across the all hospitals in the US. Diagnosis can be delayed due to a number of variables including, but not limited to, the diagnostic time in medical imaging. The presented algorithm offers a solution to such delays by allowing treating physicians an accurate preliminary report. This gained time advantage should translate into a faster treatment response by the ED team. Moreover, the algorithm is designed to accurately depict pulmonary artery and veins and accounts for respiratory artifact during scan acquisition. As second and third pass search is initiated, the algorithm continues to “learn” upon the subsequent pass. Hence, each application is produces greater diagnostic accuracy. We hope this abstract clearly outlines how the latest developments in machine learning algorithms can aid in diagnostic fidelity of acute embolic events.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords