GET THE APP

..

Journal of Material Sciences & Engineering

ISSN: 2169-0022

Open Access

Magnetic Mirtazapine Loaded Poly(propylene glycol)bis(2aminopropylether) (PPG-NH2, MW_2000) Nanocarriers for Controlled Drug Release

Abstract

Jibowu T and Rohani S

Mirtazapine is an antidepressant that was introduced in 1996 for the treatment of moderate and severe depression. Mirtazapine is the only tetracyclic antidepressant that is approved by the Food and Drug Administration to treat depression. Mirtazapine is devoid of most side effects but has antihistamine side effects of drowsiness and weight gain. Its bioavailability is only fifty percent. The low bioavailability and side effects can be improved by altering the pharmokinetic profile of the drug by controlling the release of the drug. The slow release of the drug will reduce the harmful affect it has on the cells decreasing the side effects, as well as the loading of the drug in the nanocarrier will allow for a longer residence time in the body before it is removed by the gastrointestinal tract. In this research paper the pharmokinetic profile of Mirtazapine will be altered by surrounding the drug with a biodegradable polymer called poly(propylene glycol) bis(2-aminopropylether) (PPG-NH2, MW _ 2000) chains. This profile will be done at different polymer concentrations, drug concentrations and solubilizer concentration to see how this will affect the release of the drug. In this research project it was found that using a lower concentration of poly(propylene glycol) bis (2-aminopropylether) (PPG-NH2, MW_2000) chains of 0.5 g/mL led to a slower release in comparison to the other polymer concentrations with an encapsulation of 10 mg of Mirtazapine. When the drug weight was increased but the polymer concentration stayed the same (0.95 g/mL) the release rate increased with drug concentration. Also when the stabilizer concentration was increased, but the polymer concentration and drug concentration remained the same (0.95 g/mL and 10 mg respectively) the release rate increased. Therefore in order to allow for a slower release rate one should use the lower polymer concentration of 0.95 g/mL, with the lower concentration of stabilizer. This will allow for a slower release of the drug Mirtazapine which will lower the side effects and increase the bioavailability percentage.

PDF

Share this article

Google Scholar citation report
Citations: 3677

Journal of Material Sciences & Engineering received 3677 citations as per Google Scholar report

Journal of Material Sciences & Engineering peer review process verified at publons

Indexed In

 
arrow_upward arrow_upward