alexa Magnetic Nanocarriers Enhance Drug Delivery Selectively to Human Leukemic Cells
ISSN: 2157-7439

Journal of Nanomedicine & Nanotechnology
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Magnetic Nanocarriers Enhance Drug Delivery Selectively to Human Leukemic Cells

Kheireddine El-Boubbou1,2*#, Rizwan Ali2#, Hassan M Bahhari2 and Mohamed Boudjelal2

1Department of Basic Sciences, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City, National Guard Health Affairs, Riyadh 11481, Saudi Arabia

2King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, National Guard Hospital, Riyadh 11426, Saudi Arabia

#Kheireddine El-Boubbou and Rizwan Ali contributed equally

*Corresponding Author:
Kheireddine El-Boubbou
King Saud bin Abdulaziz University for Health Sciences (KSAU-HS)
King Abdulaziz Medical City
National Guard Health Affairs
Riyadh 11481, Saudi Arabia
Tel: 966 1142995625
Fax: 9661142995340
E-mail: [email protected]

Received Date: May 02, 2017; Accepted Date: May 16, 2017; Published Date: May 23, 2017

Citation: El-Boubbou K, Ali R, Bahhari HM, Boudjelal M (2017) Magnetic Nanocarriers Enhance Drug Delivery Selectively to Human Leukemic Cells. J Nanomed Nanotechnol 8: 441. doi: 10.4172/2157-7439.1000441

Copyright: © 2017 El-Boubbou K, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.



Selective drug delivery to human leukemia cells using a nanoparticulate chemotherapeutic formulation is hugely needed. In this work, we report the development of a magnetic nanocarrier made of PVP-stabilized magnetic iron oxide nanoparticles (PMNP) loaded with the anticancer drug Doxorubicin (Dox) as a promising selective drug carrier to different types of human leukemia and normal cells. Our results revealed that while the unloaded MNPs were not potent to any of the cells, [email protected] showed significant toxicities, effectively killing the different leukemia cells, albeit at different inhibitory concentrations. Interestingly and superior to free Dox, [email protected] showed enhanced and significant inhibition towards the human monocytic THP-1 cells compared to human promyelocytic leukemia cells HL-60 (2-fold enhanced cytotoxicities), with the least potency towards the normal peripheral blood mononuclear cell (PBMC) cells (up to 6-fold). Nonetheless, free Dox was found to be concurrently less toxic to all the three cell lines tested. The cytotoxic effects obtained were further confirmed by live confocal imaging and electron microscopy. Both imaging techniques confirmed distinct morphological changes (membrane blebbing, shrinkage, and condensation) corresponding to typical apoptotic features in the treated leukemia cells compared to normal PBMC cells. The observed enhanced cytotoxic effects of [email protected] is mostly dependent upon the selective and differential endocytic uptake of [email protected], with subsequent release of Dox intracellularly to the cytoplasm after 6 h, which then translocates to the nucleus after 24 h, causing apoptotic cell death. Importantly, magnetic Dox nanocarrier described here reduces the unwanted diffusive side effects of the free drug and allows selective drug delivery to leukemic cells, allowing its potential use for leukemic patients’ theranostics.


Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals


[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_he[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version