alexa Malaria Parasite Pyrimidine Nucleotide Metabolism: A Promising Drug Target

Archives of Parasitology
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Mini Review

Malaria Parasite Pyrimidine Nucleotide Metabolism: A Promising Drug Target

Jerapan Krungkrai*

Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Thailand

*Corresponding Author:
Jerapan Krungkrai
Department of Biochemistry, Faculty of Medicine, Chulalongkorn University
1873 Rama 4 Rd, Pathumwan, Bangkok 10330, Thailand
Tel: 662-2564482
Fax: 662-2524986
E-mail: [email protected]

Received date: January 13, 2017; Accepted date: May 02, 2017; Published date: May 05, 2017

Citation: Krungkrai J (2017) Malaria Parasite Pyrimidine Nucleotide Metabolism: A Promising Drug Target. Arch Parasitol 1:101.

Copyright: © 2017 Jerapan K. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 

Abstract

Malaria is a major cause of morbidity and mortality in the tropical and subtropical endemic countries worldwide. This is largely due to the emergence and spread of resistance to most antimalarial drugs currently available, including the first-line treatment artemisinins. Thus, to fight this disease, there is an essential requirement to develop new antimalarial drugs for malaria chemotherapy. Plasmodium falciparum, the causative agent of the most lethal form of malaria in humans, cannot salvage preformed bases or nucleosides for pyrimidine synthesis and relies solely on pyrimidine nucleotides synthesized through the de novo biosynthetic pathway. In contrast, the human host cells have functionally operated both the salvage and de novo pathways. This mini review summarizes significant progress on understanding the pyrimidine nucleotide metabolism and the functional enzymes in the human parasite P. falciparum, which are different from the human host metabolic processes. Most recent information of the three-dimensional crystal structures and the catalytic mechanisms of the de novo pyrimidine enzymes: dihydroorotate dehydrogenase, orotate phosphoribosyltransferase, and orotidine 5'-monophosphate decarboxylase, as well as their inhibitors affecting these enzymatic activities are briefly reviewed in the context of their therapeutic potential against malaria.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords