alexa Mathematical Model of Complete Shallow Water Problem with Source Terms, Stability Analysis of Lax-Wendroff Scheme
ISSN: 2376-130X

Journal of Theoretical and Computational Science
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Mathematical Model of Complete Shallow Water Problem with Source Terms, Stability Analysis of Lax-Wendroff Scheme

Florence T Namio1,2, Eric Ngondiep1,2*, Romaric Ntchantcho1 and Jean C Ntonga1

1Hydrological Research Centre, Institute of Geological and Mining Research, 4110 Yaoundé-Cameroon

2Department of Mathematics and Physical Sciences, National Advanced School of Engineering, University of Yaoundé I, 8390 Yaoundé-Cameroon

*Corresponding Author:
Eric Ngondiep
Scientist in Mathematics, Numerical analysis
Institute of Geological and Mining Research
Hydrological Research Centre
PO Box: 4110 yaoundé-Cameroon, Yaoundé
Centre 237, Cameroon
Tel: +237678046703
Fax: +237678046703
E-mail: [email protected]/ [email protected]

Received date: August 28, 2015; Accepted date: September 15, 2015; Published date: September 25, 2015

Citation: Namio FT, Ngondiep E, Ntchantcho R, Ntonga JC (2015) Mathematical Model of Complete Shallow Water Problem with Source Terms, Stability Analysis of Lax-Wendroff Scheme. J Theor Comput Sci 2:132. doi:10.4172/2376-130X.1000132

Copyright: © 2015 Namio FT, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 

Abstract

The most effective simulations of complete physical problems consist of the evaluation of maximum water levels and discharges that may be attained at particular locations during the development of an exceptional meteorological event. There is also the prevision of the scenario subsequent to the almost instantaneous release of a great volume of liquid. The situation is that of the breaking of a man made dam. There is therefore a necessity to develop a model capable of reproducing solutions of the complete equations despite the irregularities of a non-prismatic bed. This requires the development of efficient and effective numerical schemes able to predict water levels and discharges in hydraulic systems. The use of mathematical models as a predictive tool in the simulation of free surface flows represents a good candidate for the application of many of the techniques developed in fluid dynamics. In this paper we develop a 1-D complete model of shallow water equations with source terms using both conservation of water mass and conservation of the momentum content of the water. We describe the Lax-Wendroff scheme for these nonlinear partial differential equations (PDEs) and we analyze the stability restriction of the method. This extends the nonstationary shallow water problems without source terms which are deeply studied in literature. Some numerical experiments are considered and critically discussed.

Keywords

Related Subjects

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords