alexa Mathematical Model of Compost Pile Temperature Prediction | OMICS International
ISSN: 2161-0525

Journal of Environmental & Analytical Toxicology
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Mathematical Model of Compost Pile Temperature Prediction

El-Sayed G Khater*, Adel H Bahnasawy and Samir A Ali
Agricultural Engineering Department, Faculty of Agriculture, Benha University, 13736, Egypt
Corresponding Author : El-Sayed G. Khater
Agricultural Engineering Department
Faculty of Agriculture, Benha University
13736, Egypt
Tel: +20132467034
E-mail: [email protected]
Received September 02, 2014; Accepted Septemebr 19, 2014; Published September 22, 2014
Citation: Khater EG, Bahnasawy AH, Ali SA (2014) Mathematical Model of Compost Pile Temperature Prediction. J Environ Anal Toxicol 4:242. doi: 10.4172/2161-0525.1000242
Copyright: © 2014 Khater EG, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

A mathematical model of heat balance was developed to predict the compost temperature during the maturation stage. The components of the energy balance of the compost pile which include: heat gained (heat generation and solar radiation) and heat lost (radiation, evaporation, convection, and conduction) at different ambient temperatures. The model was able to predict the pile temperature at different ambient temperatures (15, 20, 25, 30 and 35°C) and different airflow rates (0.7, 1.1 and 1.5 mg air s-1 kg-1 dry matter). The results showed that the pile temperature increases with increasing ambient temperature and it decreases with increasing airflow rates, where, as the ambient temperature increased from 15 to 35°C, the pile temperature increased from 33.40 to 37.41°C, and when the airflow rates increased from 0.7 to 1.5 mg air s-1 kg-1 dry matter, the pile temperature decreased from 34.40 to 32.39°C. The pile temperature increased slightly and reached a maximum value at day 14. It indicates that the net energy gained to the pile increases with increasing ambient temperature, meanwhile, the heat lost decreases with increasing ambient temperature. The model results indicated that the predicted daily temperature was in a reasonable agreement with those measured ones and other data in literature (Barrena et al. and Ahn et al.) at different ambient temperatures and airflow rates, where, it ranged from 30.30 to 73.40°C, while it was from 18.0 to 71.0°C experimentally during the whole period of compost maturation.

Keywords

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

materialsci[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version