alexa Mechanical Behavior of Long Carbon Fiber Reinforced Pol
ISSN: 2169-0022

Journal of Material Sciences & Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Mechanical Behavior of Long Carbon Fiber Reinforced Polyarylamide at Elevated Temperature

Wang Q1, Ning H1*, Vaidya U2 and Pillay S1

1Department of Materials Science and Engineering, University of Alabama at Birmingham, Birmingham, USA

2Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, USA

*Corresponding Author:
Ning H
Department of Materials Science and Engineering
University of Alabama at Birmingham
Birmingham, USA
Tel: 2059967390
E-mail: [email protected]

Received Date: October 24, 2016; Accepted Date: November 04, 2016; Published Date: November 14, 2016

Citation: Wang Q, Ning H, Vaidya U, Pillay S (2016) Mechanical Behavior of Long Carbon Fiber Reinforced Polyarylamide at Elevated Temperature. J Material Sci Eng 5: 294. doi: 10.4172/2169-0022.1000294

Copyright: © 2016 Wang Q, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 

Abstract

Long fiber reinforced thermoplastic (LFT) composites have recently found increasing use in transportation, military and aerospace applications and become well established as high volume and low cost materials with high specific modulus and strength, superior damage tolerance, and excellent fracture toughness. This study is conducted to evaluate the performance of long fiber reinforced thermoplastic composite at elevated high temperature. Long carbon fiber reinforced polyarylamide (CF/PAA) composites containing 20 wt% and 30 wt% carbon fibers are used and processed using extrusion compression molding. Flexural and tensile samples are tested at three temperatures, room temperature, medium temperature (MD 65°C) and glass transition temperature (TG 80°C). Samples in both longitudinal and transverse directions are prepared to show the effect of the orientation on mechanical properties at different temperatures. The testing results show that as temperature increases, both of the flexural and tensile properties of the CF/PAA decrease as expected. Both of the flexural and tensile modulus reduce more dramatically than the flexural and tensile strength, indicating that the temperature has more pronounced effect on modulus than strength. The transversely oriented samples generally show larger reduction in properties than the longitudinally oriented samples. Temperature significantly affects flexural strength at the elevated temperature section between MD and TG temperature.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords