alexa Microbial Lipid Accumulation Capability of Activated Sludge Feeding on Short Chain Fatty Acids as Carbon Sources through Fed-Batch Cultivation
ISSN: 2155-9821

Journal of Bioprocessing & Biotechniques
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Microbial Lipid Accumulation Capability of Activated Sludge Feeding on Short Chain Fatty Acids as Carbon Sources through Fed-Batch Cultivation

Dhan Lord Fortela1, Rafael Hernandez1,2*, Mark Zappi1,2, Todd W French3, Rakesh Bajpai1, Andrei Chistoserdov4, Emmanuel Revellame2 and William Holmes2
1Department of Chemical Engineering, University of Louisiana, Lafayette, LA 70504, USA
2Energy Institute, University of Louisiana, Lafayette, LA 70504, USA
3Dave C Swalm School of Chemical Engineering, Mississippi State University, Mississippi State, MS 39762, USA
4Department of Biology, University of Louisiana, Lafayette, LA 70504, USA
*Corresponding Author : Rafael Hernandez
Department of Chemical Engineering
University of Louisiana at Lafayette
PO Box 44130, Lafayette, LA 70504-4130, USA
Tel: 337-482-6062
E-mail: [email protected]
Received: March 16, 2016 Accepted: April 11, 2016 Published: April 15, 2016
Citation: Fortela DL, Hernandez R, Zappi M, French TW, Bajpai R, et al. (2016) Microbial Lipid Accumulation Capability of Activated Sludge Feeding on Short Chain Fatty Acids as Carbon Sources through Fed-Batch Cultivation. J Bioprocess Biotech 6:275. doi:10.4172/2155-9821.1000275
Copyright: © 2016 Fortela DL, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
 

Abstract

The potential of activated sludge microbial lipid technology as a sustainable energy platform has been recognized in the past years, but it has been challenged by the cost of carbon sources. This study hypothesized that Short Chain Fatty Acids (SCFAs) that can be derived from organic wastes can be alternative carbon sources. Therefore, this work evaluated the capability of activated sludge microbial consortia to accumulate microbial lipid by fed-batch feeding of SCFAs acetic acid, propionic acid, and butyric acid that were fed every 12 h period in 5 liter bioreactors. Activated sludge microbial consortia can accumulate microbial lipid by feeding on acetic acid. Acetic acid at 1.5 g/L loading per feeding enhanced the lipid content of activated sludge up to around 20% (w/w) dry biomass. This is comparable to that of oleaginous microorganisms. The feeding of nitrogen source (ammonium) at molar C/N of 70 only at the start resulted in significant lipid accumulation as compared to that from feeding of nitrogen for every feeding of the carbon source (acid-substrates). Fatty Acid Methyl Esters (FAMEs) profiles of the extracted lipids changed during cultivation. A biodiesel volumetric yield increase of 325% (w/w) from initial culture was achieved. This microbial lipid enhancement was confirmed using fluorescence microscopy imaging of neutral lipids, which also showed that the neutral lipid-containing cells are in the size range of yeasts. This work proved the hypothesis that activated sludge microbial consortia can accumulate microbial lipid by feeding on SCFAs.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords