alexa Mild Exercise Suppresses Exacerbation of Dermatitis in NC/Nga Mice: Correlation with b-endorphin Levels
ISSN: 2155-9554

Journal of Clinical & Experimental Dermatology Research
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Mild Exercise Suppresses Exacerbation of Dermatitis in NC/Nga Mice: Correlation with b-endorphin Levels

Keiichi Hiramoto1,2* Eisuke F Sato1, Hiromi Kobayashi2, Satoshi Yokoyama1 and Kazuya Ooi1

1Department of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3 Minamitamagakicho, Suzuka, Mie 513-8670, Japan

2Department of Dermatology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno, Osaka 545-8585, Japan

*Corresponding Author:
Keiichi Hiramoto, Ph.D
Department of Pharmaceutical Science
Suzuka University of Medical Science
3500-3 Minamitamagakicho
Suzuka, Mie 513-8670, Japan
Tel: +81-59-340-0575
Fax: +81-59-368-1271
E mail: [email protected] or [email protected]

Received date: June 25, 2013; Accepted date: July 18, 2013; Published date: July 24, 2013

Citation: Hiramoto K, Sato EF, Kobayashi H, Yokoyama S, Ooi K (2013) Mild Exercise Suppresses Exacerbation of Dermatitis in NC/Nga Mice: Correlation with b-endorphin Levels. J Clin Exp Dermatol Res 4:180. doi: 10.4172/2155-9554.1000180

Copyright: © 2013 Hiramoto K, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 

Abstract

Atopic dermatitis (AD) is known to be effected by mild or strong stress. However, the mechanism underlying this phenomenon is unclear. This study analyzed the mechanism(s) responsible for the influence of different levels of stress on AD. Specific pathogen-free (SPF) and conventional NC/Nga mice were used for the studies. Conventional mice, but not SPF mice, spontaneously develop dermal symptoms similar to that of patients with AD. Two types of stress, mild (20 m/min for 60 min) or strong (25 m/min for 90 min) exercise were applied using a treadmill four times per day. The symptoms of the conventional group were strongly exacerbated by strong exercise but ameliorated by mild exercise. The plasma concentration of β-endorphin was increased by mild exercise. The transepidermal water loss of strong exercise in the conventional mice was higher than that of the no-exercise conventional mouse group. The levels of collagen IV in conventional group were unchanged by mild exercise, but decreased by strong exercise. The level of matrix metalloproteinase-9 was suppressed by mild exercise in the conventional groups, and elevated further by strong exercise. In addition, the expression of the μ-opioid receptor was increased on the mast cell surface of the conventional mice that were subjected to mild exercise. These observations suggest that exercise-induced stress significantly affects the symptoms of AD concomitant with the levels of β-endorphin. This hormone might control the collagen IV degradation from mast cells, and thus affect the barrier function of the skin.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords