alexa Miliacin Associated with Polar Lipids: Effect on Growth
ISSN: 2167-0951

Hair Therapy & Transplantation
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Miliacin Associated with Polar Lipids: Effect on Growth Factors Excretion and Extracellular Matrix of the Dermal Papilla Hair Follicle Model Maintained in Survival Conditions

Boisnic S*, Branchet MC, Gaillard E and Lamour I

Group of Research and Evaluation in Dermatology and Cosmetology (GREDECO), Paris, France

*Corresponding Author:
Boisnic S
Group of Research and Evaluation in Dermatology and Cosmetology (GREDECO)
69 rue de la Tour, Paris, 75016, France
Tel: 33145865882
E-mail: [email protected]

Received date: August 1, 2016; Accepted date: September 15, 2016; Published date: September 22, 2016

Citation: Boisnic S, Branchet MC, Gaillard E, Lamour I (2016) Miliacin Associated with Polar Lipids: Effect on Growth Factors Excretion and Extracellular Matrix of the Dermal Papilla Hair Follicle Model Maintained in Survival Conditions. Hair Ther Transplant 6:143. doi: 10.4172/2167-0951.1000143

Copyright: © 2016 Boisnic S, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 

Abstract

Background: The Dermal Papilla (DP) consists in specialized dermal fibroblasts located at the base of hair follicles and secreting extracellular matrix, especially collagen and glycosaminoglycans. DP cells are responsible for the production of hair fibers, by inducing anagen phase, and by maintaining the hair in this growth phase. Miliacin (contained in millet oil) is known for its healing properties and activity thereof on cellular proliferation. Miliacin has been associated with polar lipids, which are known to act as a vector, for increasing the bioavailability of the active compounds. Objectives: To explain the cellular hair bulb stimulation by miliacin associated with polar lipids (MPL), we used a model of hair follicle maintained in survival conditions. The modulation of collagen and glycosaminoglycans in the DP, the mitotic index for keratinocytes in the hair bulb and the growth factors excretion (IGF1 and KGF assays) were studied. Materials and Methods: Human hair scalp fragments were maintained in survival conditions for 7 days and treated by MPL diluted in the culture media. Results: A significant increase (14.1%) of IGF1 with an important (140%) and significant stimulation of mitotic index (Ki67 positive cells) was observed in the epithelial cells of hair bulb with MPL. A significant increase (20.8%) of collagen thickness was measured in the connective tissue sheath of the hair in contact with MPL. Conclusion: Miliacin associated with polar lipids acts on dermal papilla where it stimulates IGF1 growth factor production and renewal of keratinocytes in hair bulb. It also increases the thickness of extracellular matrix of the connective tissue sheaths.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords