alexa Mixed Inbred FVB;B6 Background Strain Attenuates Kidney Disease and Improves Survival of Gnem712t/M712T Mice
ISSN: 2168-9547

Molecular Biology: Open Access
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Mixed Inbred FVB;B6 Background Strain Attenuates Kidney Disease and Improves Survival of Gnem712t/M712T Mice

Yadira Valles-Ayoub1,2, Arman Haghighatgoo1,2, Chai Saechao1, Zeshan Khokher1,2, Christopher Creencia3, Oscar Scremin2,4, Gregory Lawson, DVM2,5, Babak Darvish2 and Daniel Darvish1,2*

1HIBM Research Group, Reseda, CA

2VA Greater Los Angeles (VA-GLA/UCLA), Los Angeles, CA

3Tissue Procurement Core Laboratory, Department of Pathology and Laboratory Medicine, UCLA School of Medicine, Los Angeles, CA

4Molecular, Cellular & Integrative Physiology IDP, UCLA, Los Angeles, CA

5Division of Laboratory Animal Medicine, UCLA, Los Angeles, CA

*Corresponding Author:
Daniel Darvish, MD
HIBM Research Group, 18341 Sherman Way #201A
Reseda, CA 91335
Tel: 818-789-1033 x 3
Fax: 818-741-3727
E-mail: [email protected]

Received date March 03, 2012; Accepted date March 26, 2012; Published date April 01, 2012

Citation: Valles-Ayoub Y, Haghighatgoo A, Saechao C, Khokher Z, Creencia C, et al. (2012) Mixed Inbred FVB;B6 Background Strain Attenuates Kidney Disease and Improves Survival of Gnem712t/M712T Mice. Molecular Biology 1:104. doi:10.4172/2168-9547.1000104

Copyright: © 2012 Valles-Ayoub Y, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 

Abstract

Recessive form of Hereditary Inclusion Body Myopathy (HIBM, IBM2, MIM:600737) is an adult onset muscle wasting disorders caused by hypomorphic GNE, the rate-limiting enzyme of sialic acid (Sia) biosynthesis. Unlike human patients, mice bearing the GneM712T/M712T genotype in C57BL/6 background strain suffer severe glomerular hematuria, incomplete podocyte development, and do not survive beyond the first few days of life. We crossed heterozygous mice (GneM712T/+) of B6 strain with FVB strain mice. In mixed inbred FVB;B6 background, the homozygous mice show attenuated glomerular disease and survive longer (mean survival 22±13 weeks, n=26). Paradoxically, the homozygous mice showed increased total Sia levels in serum (2x control), and Neu5Ac:Neu5Gc ratios are slightly shifted towards Neu5Ac in serum and towards Neu5Gc in muscle tissue. Increase in serum Sia levels may be caused by altered glomerular filtration. This paradoxical increase in serum Sia may contribute to Sia pools of muscle, and exert a potential beneficial effect. In summary, the background strain of mouse model can significantly affect the disease phenotype.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords