alexa Model Development for pH, Salinity and Conductivity Mon
ISSN: 2150-3494

Chemical Sciences Journal
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Model Development for pH, Salinity and Conductivity Monitoring and Predicting the Diffusion Concentration in Stagnant Water

Ukpaka CP1* and Douglas IE2

1Department of Chemical/Petrochemical Engineering, Rivers State University of Science and Technology, Nkpolu PMB 5080, Port Harcourt, Nigeria

2Department of Marine Engineering, Rivers State University of Science and Technology, Nkpolu PMB 5080, Port Harcourt, Nigeria

*Corresponding Author:
Ukpaka CP
Department of Chemical/Petrochemical Engineering
Rivers State University of Science and Technology
Nkpolu PMB 5080, Port Harcourt, Nigeria
E-mail: [email protected]

Received date: February 24, 2016 Accepted date: February 26, 2016 Published date: March 04, 2016

Citation: Ukpaka CP, Douglas IE (2016) Model Development for pH, Salinity and Conductivity Monitoring and Predicting the Diffusion Concentration in Stagnant Water. Chem Sci J 7:120. doi:10.4172/2150-3494.1000120

Copyright: © 2016 Ukpaka CP, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 

Abstract

The research work presents the development of a mathematical model for predicting the diffusion of pH, salinity and conductivity in a stagnant water environment. The model was formulated from the basic principle of mass and momentum concept which was resolved to obtain an ordinary differential equation of y y p c (D c ) (VC) k t y ∂ ∂ ∂ ∂ ∂ ∂ − = − − ∂ ∂ . A mathematical tool known as the least square method was applied to resolved the differential equation to a quadratic equation of the form; C=Dd2+Vd+kp. Five water samples were collected at a depth of ≤ 5 cm, 15 cm, 30 cm, 45 cm, and 60 cm, in the vicinity of the Asphalt plant Company, located at Enito 3, in Ahoada West L.G.A of River State. The samples were analyzed to determine their physiochemical parameters. Experimental data obtained from the analysis were fitted into the model to obtain their diffusivities and velocities of the parameters upon the influence of contaminants. Concentrations of the contaminants at the various depths were simulated and the polynomial of the curve was also established to ascertain the validity of the developed model. Simulated results from the model were compared analytically and graphically with the experimental and validated result as presented in the work. The results obtained show a reasonable level of agreement which is an indication of the reliability of the developed model for predicting the contaminant diffusion in stagnant water.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords