Reach Us +447482877761
Modularity and Distribution of Sulfur Metabolism Genes in Bacterial Populations: Search and Design | OMICS International | Abstract
ISSN: 0974-7230

Journal of Computer Science & Systems Biology
Open Access

Like us on:

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Modularity and Distribution of Sulfur Metabolism Genes in Bacterial Populations: Search and Design

Andrew Kuznetsov*

University of Freiburg, Germany; Institute of Biology of the Southern Seas, Ukraine

*Corresponding Author:
Dr. Andrew Kuznetsov
University of Freiburg, Germany
Institute of Biology of the Southern Seas, Ukraine
E-mail: [email protected]

Received Date:December 02, 2009; Accepted Date: November 26, 2010; Published November 28, 2010

Citation: Kuznetsov A (2010) Modularity and Distribution of Sulfur Metabolism Genes in Bacterial Populations: Search and Design. J Comput Sci Syst Biol 3:091-106. doi: 10.4172/jcsb.1000065

Copyright: © 2010 Kuznetsov A. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Biological Engineering involves global DNA sampling and modular design from genetic parts. A new approach reflected by natural history is based on the recognition of interchangeable DNA fragments that move around the world due to horizontal gene transfer. According to the large scale, metagenomics provide opportunities to sequence whole genomes within environmental populations. Annotated gene sequences, protein structures, and metabolic data can be used to design small biosystems from interchangeable genetic parts, the same as from functional modules. To illustrate this, the 21 genes for sulfur metabolism were inferred from the genome of bacterium Vesicomyosocius okutanii HA, and the distribution of two gene clusters (dissimilatory sulfite reductase - dsr and sulfur-oxidation - sox) within environmental samples was investigated. The correlation between the dsr and sox clusters for the experimental set of 41 stations was R = 0.86 which demonstrates the complementarity of dsr and sox metabolic pathways in environmental populations. Hypothetical functions were assigned using comparisons with known proteins. The 18 reads from symbionts of gutless worm Olavius algarvensis showed a high identity to large AprA protein from V.okutanii. In addition, comparative 3D modeling of hypothetical DsrB protein revealed sulfite reductase ferredoxin-like half domain, sulfite reductase 4Fe-4S domain, and a repressor of phase-1 flagellin. The simplistic reconstruction of sulfur metabolism from parts and examples of hierarchical modularity in nature are given. The origin of modularity is considered in the context of minimal cell and horizontal gene transfer. The role of ancient sulphur metabolism in modularization is discussed under the umbrella of iron-sulfur world theory (Wächtershäuser, 1988), deep-hot biosphere model (Gold, 1992), and radiolysis hypothesis (Garzón and Garzón, 2001). The reverse engineering approach based on natural genetic modules is proposed for understanding early life.


Recommended Conferences

16th World Congress on Structural Biology

Amsterdam, Netherlands
Share This Page