alexa Multi Resolution Pruning Based Co-location Identification in Spatial Data
ISSN ONLINE(2320-9801) PRINT (2320-9798)

International Journal of Innovative Research in Computer and Communication Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Special Issue Article

Multi Resolution Pruning Based Co-location Identification in Spatial Data

Mrs.V.Prema1, R.Selvasudhan2
  1. Nephrology Department, National Medical Center "La Raza", IMSS, Mexico City, Mexico
  2. Infectious diseases department, National Medical Center "La Raza", IMSS, Mexico City, Mexico
Related article at Pubmed, Scholar Google
 

Abstract

In this paper we put forward a plant prediction system with advanced clustering and improved colocation mining. Spatial data differs from the other forms of data by the fact that the neighbouring objects will have noteworthy effect to the object under consideration. Thus mining the data item and its co-location pattern together becomes more vital. In our work, we suggest an advanced method of plant prediction scheme by two steps. Initially, clustering the location areas into three types according to the nature of the location by considering the GIS (Geographic Information System) attributes and clustering the plant species also according to thegeographical location which suits the existence of the plant. These clustering is done by modifying traditional k-means clustering algorithm by altering its repeated iteration process into single iteration and repeating the same clustering by considering multiple attributes associated with the location and plant species. Finally, a combinatorial spatial co-location algorithm is used to mine the co-locations and a plant prediction system is designed in which, for a given plant species, prediction of suitable colocations which has the highest supporting environment to grow and a set of plant species which has the highest probability of co-existence is determined. Experimental results shows the prediction to be more effective in computation time and accuracy, particularly while updating the database dynamically with the new entries as the computation and prediction is limited to the initially clustered dataset rather than the complete database.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords