alexa New Mode (Molecular-Sensing) of Heinz Body Formation Mechanisms Inherent in Human Erythrocytes: Basis for Understanding of Clinical Aspects of Drug-Induced Hemolytic Anemia and the Like | Abstract
ISSN: 1948-593X

Journal of Bioanalysis & Biomedicine
Open Access

Like us on:

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Review Article

New Mode (Molecular-Sensing) of Heinz Body Formation Mechanisms Inherent in Human Erythrocytes: Basis for Understanding of Clinical Aspects of Drug-Induced Hemolytic Anemia and the Like

Yoshiaki Sugawara*, Yuki Shigemasa, Yuko Hayashi, Yoko Abe, Ikumi Ohgushi and Eriko Ueno

Department of Health Science, Prefectural University of Hiroshima, Hiroshima 734-8558, Japan

*Corresponding Author:
Yoshiaki Sugawara
Department of Health Science
Prefectural University of Hiroshima
Hiroshima 734-8558, Japan
Tel: +81-82-251-9783
Fax: +81-82-251-9405
E-mail: [email protected]

Received May 02, 2013; Accepted Date: June 12, 2013; Published Date: June 15, 2013

Citation: Sugawara Y, Shigemasa Y, Hayashi Y, Abe Y, Eriko Ueno IO (2013) New Mode (Molecular-Sensing) of Heinz Body Formation Mechanisms Inherent in Human Erythrocytes: Basis for Understanding of Clinical Aspects of Drug-Induced Hemolytic Anemia and the Like. J Bioanal Biomed 5: 036-056. doi: 10.4172/1948-593X.1000078

Copyright: © 2013 Sugawara Y, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

The human hemoglobin (Hb) molecule (α2β2) has two types of α–β interface (i.e., α1–β1[and α2–β2] and α1–β2[and α2–β1]). The latter α1–β2(and α2–β1) interface is associated with cooperative O2 binding, and exhibits principal roles if the molecule goes from its deoxygenated to oxygenated quaternary structure. The role of the former α1–β1(and α2–β2) interface has been unclear for a long time. In this regard, important and intriguing observations have been accumulating, so that a new gaze can be focused on the α1–β1(and α2–β2) interface. Our most recent findings suggest that the α1–β1(and α2–β2) interface may exert delicate control ofthe intrinsic tilting capability of the distal (E7) His residues (i.e., α58His (E7) in the α chain and β63His (E7) in the β chain) depending on internal and external conditions of the erythrocyte to lead to degradation of Hb to hemichrome, and subsequent clustering of Heinz bodies within the erythrocyte. In the spleen, rigid intra-erythrocytichemichrome inclusions (Heinz bodies) act as “sticking points”, so Heinz body-containing red cells become trapped and undergo hemolysis. In this article, we first provide our necessary basic experimental findings that led us to grasp molecular biosensing mechanisms inherent in human erythrocytes for the appreciation of aging and determination of their lifespan, and summarize their roles in physiology. We then discuss how these accomplishments contribute to deeper understanding of clinical aspects of drug-induced hemolytic anemia, defects in the intra-erythrocytic reducing system and unstable Hb disease, in which the mechanisms for acute hemolytic crisis cannot be explained on the basis of conventional views.

Keywords

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

+1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
Leave Your Message 24x7