alexa New Possible Targetable Genes for Future Treatment of M
ISSN: 2155-6180

Journal of Biometrics & Biostatistics
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

New Possible Targetable Genes for Future Treatment of Mixed Lineage Leukemia

Senol Dogan*

International Burch University, Sarajevo, Bosnia and Herzegovina

*Corresponding Author:
Senol Dogan
International Burch University
Sarajevo, Bosnia and Herzegovina
Tel: +387 33 944 400
E-mail: [email protected]

Received Date: January 17, 2017; Accepted Date: May 27, 2017; Published Date: May 31, 2017

Citation: Dogan S (2017) New Possible Targetable Genes for Future Treatment of Mixed Lineage Leukemia. J Biom Biostat 8: 349. doi: 10.4172/2155-6180.1000349

Copyright: © 2017 Dogan S. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 

Abstract

Aim of study: Leukemia has different subtypes, which present unique clinical and molecular characteristics. MLL (Mixed Lineage Leukemia) is one of the new different subtypes than AML and ALL. Materials and Methods: Genomic characterization is the main key understanding the differences of MLL by analysis of differential gene expression, methylation patterns and mutational spectra that were compared and analyzed between MLL and AML types (n=197). Results: According to the genomic characterization of MLL, differentially expressed 114 genes were selected and 37 of them targeted genes having more than 2 fold expression change, including HOXA9, CFH, DDX4, MSH4, MSMB, TWIST1, ZSWIM2, POU6F2. To measure the aberrant methylation is the second genomic characterization of this research because the rearrangements of MLL gene leading to aberrant methylation. The methylation data were compared between cancer and control, so high methylated genes have been detected between MLL and AML types. The methylation loci were categorized into two groups: ≥ 10 fold difference and ≥ 5 and ≤ 10 fold difference. Some of the genes high methylated more than one location such as; RAET1E, HSD17B2, RNASE11, DGK1, POU6F2, NAGS, PIK3C2G, GADL1, and KRT13. In addition to that, analysis of somatic mutation gives us that CFH has the highest point mutation 9,92%. Conclusion: Overall, the MLL genomic characterization shows that it is different than AML and exhibits a unique molecular and biological phenotype and point to new possible targetable genes for future treatment of MLL leukemia are two important values.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords