alexa No Detection of Potential Cancer Risk for Free-Viral Reprogrammed Stem Cell-Derived Dopaminergic Neurons from Adult Mice Fibroblasts
ISSN: 2157-7633

Journal of Stem Cell Research & Therapy
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

No Detection of Potential Cancer Risk for Free-Viral Reprogrammed Stem Cell-Derived Dopaminergic Neurons from Adult Mice Fibroblasts

Liu G*

Department of Neuroscience, Carleton University, Ontario, Canada

*Corresponding Author:
Gele Liu, MD, PhD
Department of Neuroscience, 327 Life Sciences Research Building
Carleton University, 1125 Colonel by Drive
Ottawa, Ontario, K1S 5B6, Canada
Tel: 1613 520 2600
E-mail: [email protected]

Received date: January 27, 2015; Accepted date: June 03, 2015; Published date: June 05, 2015

Citation: Liu G (2015) No Detection of Potential Cancer Risk for Free-Viral Reprogrammed Stem Cell-Derived Dopaminergic Neurons from Adult Mice Fibroblasts. J Stem Cell Res Ther 5:286. doi:10.4172/2157-7633.1000286

Copyright: © 2015 Liu G This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.



Abstract

Objective: Stem cell replacement therapy through the reprogramming of somatic cells is a significant prospective therapy for neurodegenerative diseases and personalized medicine. As virus-carrying reprogramming genes impart a considerable risk for tumor formation, current approaches tend to replace the viral pattern with a non-viral system. However, there is still great concern regarding the oncogenic properties of these reprogramming genes. At present no direct evidence can verify that non-viral systems do not influence genomic DNA integration and mutagenesis events in the final products after reprogramming.
Methods: We evaluated the potential cancer risk of reprogrammed stem cell-derived dopaminergic neurons using a unique non-viral vector containing four reprogramming genes. Reprogrammed stem cell-derived dopaminergic neurons were the final products after 50 days of cell culture from adult mice fibroblasts. After 6 months of culture, these cells were assessed for cancer risk.
Results: Overall cancer risk assessments were first examined using multiple stem cell biomarkers. We did not detect any overexpression of these biomarkers. Moreover, we assessed whether or not the most important neurotransmission factors were expressed after 6 months in mass cell culture. Our results determined that only robust gene expression of tyrosine hydroxylase (TH), as the rate-limiting enzyme in dopamine synthesis, was detected. Furthermore, the final product of TH-positive dopaminergic neurons was confirmed by sequencing TH genomic DNA. Our data suggested that none of the four reprogramming genes integrated into the host cell’s genomic DNA and that no other mutagenesis events occurred after gene sequencing TH genomic DNA related complete 13 coding exons with two-ended partial untranslated regions.
Conclusion: Re-programmed adult mouse fibroblasts-derived dopaminergic neurons were proven to be a safe technology and approach as a potential therapy for neurodegenerative diseases.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords