alexa Non-Parametric Bayesian Modelling of Digital Gene Expression Data
ISSN: 0974-7230

Journal of Computer Science & Systems Biology
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Non-Parametric Bayesian Modelling of Digital Gene Expression Data

Dimitrios V Vavoulis* and Julian Gough

Department of Computer Science, University of Bristol, Bristol, United Kingdom

*Corresponding Author:
Dimitrios V Vavoulis
Department of Computer Science
University of Bristol
Bristol, United Kingdom
Tel: +44 (0)117 331573
E-mail: [email protected]

Received Date: October 20, 2013; Accepted Date: November 18, 2013; Published Date: November 25, 2013

Citation: Vavoulis DV, Gough J (2013) Non-Parametric Bayesian Modelling of Digital Gene Expression Data. J Comput Sci Syst Biol 7:001-009. doi: 10.4172/jcsb.1000131

Copyright: © 2013 Vavoulis DV, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 

Abstract

Next-generation sequencing technologies provide a revolutionary tool for generating gene expression data. Starting with a fixed RNA sample, they construct a library of millions of differentially abundant short sequence tags or “reads”, which constitute a fundamentally discrete measure of the level of gene expression. A common limitation in experiments using these technologies is the low number or even absence of biological replicates, which complicates the statistical analysis of digital gene expression data. Analysis of this type of data has often been based on modified tests originally devised for analysing microarrays; both these and even de novo methods for the analysis of RNA-seq data are plagued by the common problem of low replication. We propose a novel, non-parametric Bayesian approach for the analysis of digital gene expression data. We begin with a hierarchical model for modelling over-dispersed count data and a blocked Gibbs sampling algorithm for inferring the posterior distribution of model parameters conditional on these counts. The algorithm compensates for the problem of low numbers of biological replicates by clustering together genes with tag counts that are likely sampled from a common distribution and using this augmented sample for estimating the parameters of this distribution. The number of clusters is not decided a priori, but it is inferred along with the remaining model parameters. We demonstrate the ability of this approach to model biological data with high fidelity by applying the algorithm on a public dataset obtained from cancerous and non-cancerous neural tissues. Source code implementing the methodology presented in this paper takes the form of the Python Package DGEclust, which is freely available at the following link: https://bitbucket.org/DimitrisVavoulis/dgeclust.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords