alexa Novel Strategies in the Treatment of Multiple Myeloma: From Proteasome Inhibitors to Immunotherapy | OMICS International | Abstract
ISSN: 2157-7013

Journal of Cell Science & Therapy
Open Access

Like us on:

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Novel Strategies in the Treatment of Multiple Myeloma: From Proteasome Inhibitors to Immunotherapy

James J. Driscoll1*, Jason Burris1,2 and Christina M. Annunziata1

1Medical Oncology Branch, National Cancer Institute, 10 Center Drive, Building 10-Room 12N-226, Magnuson Cancer Center, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892

2Hematology-Oncology Service, Department of Medicine, Walter Reed Army Medical Center, 6900 Georgia Ave NW, Washington, DC 20307

*Corresponding Author:
James J. Driscoll
Medical Oncology Branch, National Cancer Institute,
10 Center Drive Building 10-Room 12N-226
Magnuson Cancer Center, National Cancer Institute
National Institutes of Health, Bethesda, MD 20892
Tel: 301-451-4401
Fax: 301-480-6255
E-mail: [email protected]

Received September 04, 2010; Accepted September 24, 2010; Published September 30, 2010

Citation: Driscoll JJ, Burris J, Annunziata CM (2010) Novel Strategies in the Treatment of Multiple Myeloma: From Proteasome Inhibitors to Immunotherapy. J Cell Sci Ther 1:101. doi: 10.4172/2157-7013.1000101

Copyright: © 2010 Driscoll JJ, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

The proteasome serves as the catalytic core of the Ubiquitin (Ub) protein degradation pathway and has become an intriguing target in drug development and cancer therapy. Successful pharmacologic inhibition of the proteasome with the small molecule bortezomib led to US Food and Drug Administration (FDA) regulatory approval for the treatment of mantle cell lymphoma and multiple myeloma (MM) and has been extended to a steadily increasing number of clinical trials to assess effi cacy and safety in other hematologic malignances and solid tumors. Proteasome inhibition results in the accumulation of multi-ubiquitinated proteins, which are normally degraded through the tightly regulated Ub pathway. The Ub-Proteasome pathway is responsible for the selective degradation of many proteins that regulate the cell cycle and growth. Inhibition of the proteasome generates the accumulation of multi-ubiquitinated proteins that eventually leads to apoptosis although the exact mechanism of cell death is not completely understood. A specialized form of the proteasome, known to as the immunoproteasome, processes intracellular and viral proteins to generate peptides that are then presented at the cell surface bound as antigens (Ags) bound to the Major Histocompatibility Complex (MHC) class I molecule receptor. Importantly, inhibitors of the immunoproteasome decrease the processing and generation of MHC class I Ags and alter tumor cell recognition by the principal cellular effectors of the immune system. Hence, proteasome inhibitors may be employed as therapeutics to regulate the production of tumor specifi c Ags and for the selective removal of tumor cells through recognition by cytotoxic T lymphocytes (CTLs), natural killer (NK) cells and dendritic cells (DC). Proteasome inhibitors have been validated as effective cytotoxic agents and may have further potential as novel immunotherapeutic strategies.

Keywords

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

+1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]nline.com

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
Leave Your Message 24x7