alexa Numerical Simulation of Turbulent Blood Flow in the Sys
ISSN: 2155-6180

Journal of Biometrics & Biostatistics
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Numerical Simulation of Turbulent Blood Flow in the System of Coronary Arteries with Stenosis

Mongkol Kaewbumrung1, Benchawan Wiwatanapataphee2*, Somsak Orankitjaroen1 and Thanongchai Siriapisith3

1Department of Mathematics, Faculty of Science, Mahidol University Bangkok 10400, Thailand

2Department of Mathematics and Statistics, Curtin University of Technology, Perth, WA 6845, Australia

3Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkoknoi, Bangkok, 10700, Thailand

*Corresponding Author:
Wiwatanapataphee B
Department of Mathematics & Statistics
Curtin University of Technology
Perth, WA 6845, Australia
Tel: 618 9266 2405
E-mail: [email protected]

Received Date: April 20, 2017; Accepted Date: April 25, 2017; Published Date: April 28, 2017

Citation: Kaewbumrung M, Wiwatanapataphee B, Orankitjaroen S, Siriapisith T (2017) Numerical Simulation of Turbulent Blood Flow in the System of Coronary Arteries with Stenosis. J Biom Biostat 8: 344. doi: 10.4172/2155-6180.1000344

Copyright: © 2017 Kaewbumrung M, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.



In this paper, we propose a mathematical model of turbulence flow of fluid through a deformable channel to study the pulsatile blood flow in the coronary system with arterial stenosis. Blood is assumed to be an incompressible non- Newtonian fluid and its motion is considered as turbulent and modelled by the mass and momentum conservations with turbulent mixing energy and specific dissipation rate. The mechanical deformation of the arterial wall is modelled by a hyperelastic differential equation. The pulsatile behaviour during each heartbeat is assigned on the entrance and exit boundaries. Numerical simulation based on the Finite Element method for the solution of arterial wall deformation, and the Arbitrary Lagrangian Eulerian Finite Volume method for the turbulence fluid-flow solution is used to investigate the effect of stenosis severity at the proximal part of the left anterior descending artery on the blood velocity, the pressure distribution and the wall shear stresses along the flow direction.


Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version