alexa Optimal Strategies for Virus Propagation
ISSN: 2168-9695

Advances in Robotics & Automation
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Optimal Strategies for Virus Propagation

Soumya B1,2,3,4*

1Department of Computer Science, University of New Mexico, USA

2Ronin Institute, Montclair, USA

3Complex Biological Systems Alliance, USA

4Broad Institute of MIT and Harvard, USA

*Corresponding Author:
Soumya B
Department of Computer Science
University of New Mexico, USA
Tel: +1 505-277-0111
E-mail: [email protected]

Received date: January 19, 2016; Accepted date: February 11, 2016; Published date: February 13, 2016

Citation: Soumya B (2016) Optimal Strategies for Virus Propagation. Adv Robot Autom 5:143. doi:10.4172/2168-9695.1000143

Copyright: © 2016 Soumya B. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

This paper explores a number of questions regarding optimal strategies evolved by viruses upon entry into a vertebrate host. The infected cell life cycle consists of a non-productively infected stage in which it is producing virions but not releasing them and of a productively infected stage in which it is just releasing virions. The study explores why the infected cell cycle should be so delineated, something which is akin to a classic “bang-bang control” or all-or-none principle. The times spent in each of these stages represent a viral strategy to optimize peak viral load. Increasing the time spent in the non-productively infected phase (τ1) would lead to a concomitant increase in peak viremia. However increasing this time would also invite a more vigorous response from Cytotoxic TLymphocytes (CTLs). Simultaneously, if there is a vigorous antibody response, then we might expect τ1 to be high, in order that the virus builds up its population and conversely if there is a weak antibody response, τ1 might be small. These tradeoffs are explored using a mathematical model of virus propagation using Ordinary Differential Equations (ODEs). The study raises questions about whether common viruses have actually settled into an optimum, the role for reliability and whether experimental infections of hosts with non-endemic strains could help elicit answers about viral progression.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords