alexa Optimal Well Design for Enhanced Stimulation Fluids Recovery and Flowback Treatment in the Marcellus Shale Gas Development using Integrated Technologies | Abstract
ISSN: 2157-7587

Hydrology: Current Research
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Optimal Well Design for Enhanced Stimulation Fluids Recovery and Flowback Treatment in the Marcellus Shale Gas Development using Integrated Technologies

Richard Olawoyin*, Christian Madu and Khaled Enab
Petroleum and Natural Gas Engineering, The Pennsylvania State University, USA
Corresponding Author : Richard Olawoyin
Petroleum and Natural Gas Engineering
The Pennsylvania State University
University Park, PA 16802, USA
Tel: +1-213-290-8355
Fax: +1-814-863-3081
E-mail: [email protected]
Received July 20, 2012; Accepted October 29, 2012; Published October 31, 2012
Citation: Olawoyin R, Madu C, Enab K (2012) Optimal Well Design for Enhanced Stimulation Fluids Recovery and Flow-back Treatment in the Marcellus Shale Gas Development using Integrated Technologies. Hydrol Current Res 3:141. doi: 10.4172/2157-7587.1000141
Copyright: © 2012 Olawoyin R et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Related article at
DownloadPubmed DownloadScholar Google

Abstract

A typical well was designed with formation properties in Springfield Township, Bradford County, Pennsylvania using computer modeling group (CMG) software to analyze the production potential in the area over 40 years. Multilateral wells gave the highest initial gas production rate and cumulative production of 1.18E+07 ft3/day and 2.6E+10 ft3 respectively. FracPro® software was used for the fracture design. The simulation demonstrates that hydraulic fracturing can appreciably increase cumulative production and production rate in the well, with an estimated 3.6 Million gallons (of water) per well required to fracture open the formation for the free flow of gas. Due to the efficient well design and stimulation design, a load recovery of approximately 86% of the injected fluid is achievable which amount to 73,714 bbls of waste water to be treated per stimulation job. The system capacity of the forward osmosis integrated process, operating on hydraulic fracturing flow-back water will treat 604,800 gallons per day (gal/d). The novel design takes into consideration the flow-back recovery per hour in the system, which is 600 bbl/ hr for the centralized system, but 150 bbl/hr for a single well pad. The tank size required would be a 25,000 gallon tank, covering approximately 1,202 square feet and cost $52,255. The forward osmosis (FO) system uses a thin-film composite (TFC) membrane system based on efficiency and power generation capabilities. The capital cost of each system is about $100,000. The annual operating cost of the FO system would be about $ 0.60/kgal of produced water. A cost estimate savings of over one million dollars ($1,000,000) is expected if the integrated forward osmosis system is implemented. Aside cost savings, the emission generated from the system is minimal, which makes it considerably environmentally friendly compared to other types of treatments.

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version