alexa Optimization of Biodiesel Production from Sunflower Oil
ISSN: 2157-7048

Journal of Chemical Engineering & Process Technology
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Optimization of Biodiesel Production from Sunflower Oil Using Response Surface Methodology

Mojtaba Mansourpoor1* and Dr. Ahmad Shariati2
1Pars Oil and Gas Company, Process Engineering Unit, Asalouye, Iran
2Gas Engineering Department, Petroleum University of Technology, Ahwaz, Iran
Corresponding Author : Mojtaba Mansourpoor
Pars Oil and Gas Company
Process Engineering Unit
Asalouye, Iran
E-mail: [email protected]
Received August 29, 2012; Accepted September 28, 2012; Published October 02, 2012
Citation: Mansourpoor M, Shariati A (2012) Optimization of Biodiesel Production from Sunflower Oil Using Response Surface Methodology. J Chem Eng Process Technol 3:141 doi: 10.4172/2157-7048.1000141
Copyright: © 2012 Mansourpoor M, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Related article at
DownloadPubmed DownloadScholar Google


Biodiesel produced by transesterification of triglycerides with alcohol, is the newest form of energy that has attracted the attention of many researchers due to various advantages associated with its usages. Response surface methodology, based on a five level, three variables central composite design is used to analyze the interaction effect of the transesterification reaction variables such as temperature, catalyst concentration and molar ratio of methanol to oil on biodiesel yield. The linear terms of temperature and catalyst concentration followed by the linear term of oil to methanol ratio, the quadratic terms of catalyst concentration and oil to methanol ratio and the interaction between temperature and catalyst concentration and also the interaction between temperature and molar ratio of methanol to oil had significant effects on the biodiesel production (p<0.05). Maximum yield for the production of methyl esters from sunflower oil was predicted to be 98.181% under the condition of temperature of 48°C, the molar ratio of methanol to oil of 6.825:1, catalyst concentration of 0.679 wt%, stirring speed of 290 rpm and a reaction time of 2h.

Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version