alexa Optimization of Cutting Parameters in Machining of Polyphenylene Sulphide Composites
ISSN ONLINE(2319-8753)PRINT(2347-6710)

International Journal of Innovative Research in Science, Engineering and Technology
Open Access

Like us on: https://twitter.com/ijirset_r
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Special Issue Article

Optimization of Cutting Parameters in Machining of Polyphenylene Sulphide Composites

A.Arunkumar1, T.Prabaharan2
  1. PG Student, Department of Mechanical Engineering, Mepco Schlenk Engineering College, Sivakasi, India
  2. Professor, Department of Mechanical Engineering, Mepco Schlenk Engineering College, Sivakasi, India
Related article at Pubmed, Scholar Google
 

Abstract

Surface finish is one of the prime requirements of customers for machined parts. In most of machining operations the main objective is optimization of surface roughness. The higher value of surface roughness generates on the machining parts and due to rework or scrap results into increase in cost and loss productivity. Surface roughness is major factor in modern CNC turning industry. The purpose of this work is focused on the analysis of optimum cutting conditions to get lowest surface roughness in turning by regression analysis. To investigate the effect of cutting parameter like spindle speed, feed rate and depth of cut on surface finish on Polyphenylene sulphide with 40% glass fiber (PPS),the experiments have been conducted using L9 orthogonal array in Minitab 16.0 software. Machining was done using diamond insert and measured the surface roughness by using Surfcom 130A.Multiple regression modeling was performed to predict the surface roughness by using machining parameter. Comparison between experimental values and predict values is carried out. The objective was to establish relation between cutting speed, feed rate and depth of cut and optimize the turning conditions based on surface roughness. These correlations are obtained by multiple regression analysis.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords