alexa Optimization of Diesel Particulate Filter Using Compos
ISSN ONLINE(2319-8753)PRINT(2347-6710)

International Journal of Innovative Research in Science, Engineering and Technology
Open Access

Like us on: https://twitter.com/ijirset_r
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Special Issue Article

Optimization of Diesel Particulate Filter Using Composite Geometry by CFD Analysis

Vijayaraj.J1, Dr. Swaminathan. M R2
Department of Mechanical Engineering College of Engineering, Guindy, Chennai, India1,2
Related article at Pubmed, Scholar Google
 

Abstract

Existing research data suggests a variation in the soot thickness along the wall-flow filters of the DPF i.e. the soot cake thickness was uneven along the length(X-axis) of the channel. This project endeavors to explore the possibility of altering the geometry of the DPF filter and hence improve regeneration by achieving a normalised soot formation. A computational, three-dimensional approach to investigate the behavior of diesel soot particles in the micro-channels of a wall-flow, porous-ceramic particulate filter is presented. The flow field is simulated with a finite volume method. Darcy’s law was used to model the porous material. The permeability was obtained by fitting experimental data namely Inlet Velocity, Exit Pressure, mass flow rate and density At this stage the effort is focused on mainly reconstructing the soot formation on the walls of the filter. The pressure drop across the channel was taken a reference value for validating the CFD model. A commercial CFD Software FLUENT R15.0 is used to analyze the soot deposition process and results to be compared with that of conventional experimental data available

Share This Page

Additional Info

Loading
Loading Please wait..
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords