alexa Optimizations of Vane Height of Guide Vane Swirl and Tumble Device to Improve in Cylinder Airflow Characteristics of a Diesel Engine Running with Vegetable Oil
ISSN: 2167-7670

Advances in Automobile Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Optimizations of Vane Height of Guide Vane Swirl and Tumble Device to Improve in Cylinder Airflow Characteristics of a Diesel Engine Running with Vegetable Oil

Idris Saad1,2* and Saiful Bari1
1School of Engineering, University of South Australia, Mawson Lakes Campus, SA, 5095, Australia
2Automotive Research and Testing Center (ARTeC), Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
*Corresponding Author : Idris Saad
Automotive Research and Testing Center (ARTeC)
Universiti Teknologi MARA, 40450 Shah Alam, Malaysia
Tel: +603 5543 6281
Fax: +603 5543 5190
E-mail: [email protected]
Received March 07, 2014; Accepted March 28, 2014; Published April 05, 2013
Citation: Saad I, Bari S (2014) Optimizations of Vane Height of Guide Vane Swirl and Tumble Device to Improve in Cylinder Airflow Characteristics of a Diesel Engine Running with Vegetable Oil. Adv Automob Eng 3:106. doi: 10.4172/2167-7670.1000106
Copyright: © 2014 Saad I, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
 

Abstract

Generally, compression ignition engine operating on neat vegetable oil and its blend with diesel fuel experience a reduction of engine performance and increase in exhaust emissions due to higher viscosity and lower volatility of vegetable oil than diesel fuel. Vegetable oil is less prone to evaporate, diffuse and mix with the in-cylinder air which eventually reduces the combustion efficiency and produces more emissions of CO and unburned HC. Therefore, this research investigated the potential of guide vane swirl and tumble device (GVSTD) to guide the air entrance to create more organized turbulence inside the fuel injected region to enhance the mixing process of air and vegetable oil. In order to do so, a base model of 3D computational fluid dynamic of internal combustion engine simulation was developed, verified and then simulations were carried with different GVSTD models. The results of turbulent kinetic energy, velocity, vorticity and swirling strength were compared to determine the optimum vane height. This research found that the 2 mm vane height was the optimum vane height with 35° twist angle, four vanes being arranged perpendicularly to each other and 30 mm vane length. Other different heights of vanes also showed improvement but 2 mm height showed the highest number of improvements. This could be due to the airflow pattern in bowl-inpiston head shape was amplified by the airflow pattern produced by the guide vane of 2 mm vane height. The extra turbulence, swirl, vorticity and velocity in the fuel injected region created by the 2 mm height vane is expected to enhance the mixing of vegetable oils with air to improve combustion and reduce CO and unburned HC emissions.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords