alexa Oxidative Stress in Plants Under Drought Conditions and the Role of Different Enzymes
ISSN: 2329-6674

Enzyme Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Review Article

Oxidative Stress in Plants Under Drought Conditions and the Role of Different Enzymes

Leonora Mansur Mattos*, ï»¿Celso Luiz Moretti
Brazilian Agricultural Research Corporation, Brazil
Corresponding Author : Leonora Mansur Mattos, Celso Luiz Moretti
Embrapa, Parque Estação Biológica
s/n, 70770-901, Brasilia, DF, Brazil
Tel: +55 (61) 3348-1528
Received October 25, 2015; Accepted December 23, 2015; Published December 25, 2015
Citation: Mattos LM (2015) Oxidative Stress in Plants Under Drought Conditions and the Role of Different Enzymes. Enz Eng 5:136. doi:10.4172/2329-6674.1000136
Copyright: © 2015 Mattos LM. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Related article at Pubmed, Scholar Google




The effects of drought stresses on plant metabolism are either direct or secondary. Oxidative stress is induced by a wide range of biotic and abiotic stresses including UV-light, pathogen invasion (hypersensitive reaction), herbicide action, oxygen shortage, among others. Drought and salt stresses usually lead to the production of reacting oxygen species (ROS) such as hydrogen peroxide (H2O2) and superoxide (O2 ·–), both produced in a number of cellular reactions, including the iron-catalysed Fenton reaction, and by various enzymes such as lipoxygenases, peroxidases, NADPH oxidase and xanthine oxidase. To control the level of ROS under stress conditions, plant tissues contain a series of enzyme scavengers of ROS. The main cellular components susceptible to damage by free radicals are lipids (peroxidation of unsaturated fatty acids in membranes), proteins and enzymes (denaturation), carbohydrates and nucleic acids. Plant carbon balance during a period of salt/water stress and subsequent recovery may depend as much on the speed and degree of photosynthetic recovery, as it depends on the degree and speed of photosynthesis decline during water reduction. Current knowledge about physiological limitations to photosynthetic recovery after different intensities of water and salt stress is still scarce. From the large amount of data available on transcript-profiling studies in plants subjected to drought it is becoming apparent that plants perceive and respond to these stresses by quickly altering gene expression in parallel with physiological and biochemical alterations; this occurs even under mild to moderate stress conditions. From a recent comprehensive study that compared salt and drought stress it is apparent that both stresses led to down-regulation of some photosynthetic genes, with most of the changes being small possibly reflecting the mild stress imposed. Drought and salt stresses are significant challenges for mankind. The utilization of different strategies, namely genetic and enzyme engineering, can contribute to the alleviation of the associated oxidative stresses. Regulating the expression of genes encoding for specific proteins and enzymes can result into drought and salt tolerance. Different crop genotypes, such as sugarcane, soybean, and wheat have already been engineered for drought tolerance. Wheat genotypes showed alterations in antioxidant enzymes as well as in enzymes associated with carbon metabolism. These important strategies will be a vitally important tool in the quest to alleviate the earth’s future problems concerning food, energy, and the environment. The present review focus on oxidative stresses associated with drought and salt conditions addressing the metabolomics involved in such constraints.

Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version