Reach Us +44-1647-403003
Analyzing the Evolution of Biochemical Reaction System with a Complex Network Based Approach | OMICS International | Abstract
ISSN: 2329-6674

Enzyme Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Review Article

Analyzing the Evolution of Biochemical Reaction System with a Complex Network Based Approach

Shu-Qiang Wang1* and Yan-Yan Shen2
1Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, China
2Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong, China
Corresponding Author : Shu-Qiang Wang
Department of Orthopaedics and Traumatology
The University of of Hong Kong
Hong Kong, China
E-mail: [email protected]
Received June 24, 2013; Accepted August 12, 2013; Published August 20, 2013
Citation: Wang SQ, Shen YY (2013) Analyzing the Evolution of Biochemical Reaction System with a Complex Network Based Approach. Enz Eng 2:113. doi:10.4172/2329-6674.1000113
Copyright: © 2013 Wang SQ, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Complex network theory has recently been used in System biology, but so far the resulting networks have only been analyzed statically. In this work, the biochemical reaction network (BRN) model is proposed based on the complex network theory and the dynamics of the network is analyzed on the molecular-scale. Given the initial ate and the evolution rules of the biochemical network, we demonstrated how the biochemical reaction network achieving homeostasis. The evolution of the biochemical reaction network is studied in perspective of average degree and edges. Comparing with the network features of random graphs, the network features from the proposed BRN model can reveal more biological sense.


Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Business & Management Journals


[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
Leave Your Message 24x7