alexa Patient Specific 3D Image-Based Radiation Dose Estimates for 90Y Microsphere Hepatic Radioembolization in Metastatic Tumors
ISSN: 2155-9619

Journal of Nuclear Medicine & Radiation Therapy
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Special Issue Article

Patient Specific 3D Image-Based Radiation Dose Estimates for 90Y Microsphere Hepatic Radioembolization in Metastatic Tumors

Andrew Kennedy1,2*, William Dezarn3 and Alec Weiss3

1Co-Medical Director, Wake Radiology Oncology, 300 Ashville Ave., Suite 110, Cary, NC, 27518 USA

2Adjunct Associate Professor, Department of Biomedical Engineering, Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA

3Department of Biologic Systems Engineering, Campus Box 7910, Broughton Hall 4160, North Carolina State University, Raleigh, NC 27695-7910 USA

*Corresponding Author:
Andrew Kennedy, MD
FACRO, Wake Radiology Oncology
300 Ashville Ave., Suite 110, Cary, North Carolina 27518
Tel: (919) 854-4588
Fax: (919) 854-9950
E-mail: [email protected]

Received date: April 26, 2011; Accepted date: May 26, 2011; Published date: June 15, 2011

Citation: Kennedy A, Dezarn W, Weiss A (2011) Patient Specific 3D Image-Based Radiation Dose Estimates for 90Y Microsphere Hepatic Radioembolization in Metastatic Tumors. J Nucl Med Radiat Ther 2:111. doi: 10.4172/2155-9619.1000111

Copyright: © 2011 Kennedy A, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.



Introduction: Hepatic brachytherapy using either resin or glass 90Y microspheres is an established therapy for unresectable primary and metastatic tumors. Unlike conventional brachytherapy, microsphere brachytherapy has no software currently available for pretreatment evaluation and radiation planning. A non-MIRD radiation dose calculation approach is desired to accurately utilize spatial relationships in the liver and tumor distribution. Materials and methods: A newly developed software tool employing the technetium-99m macro aggregated albumin (99mTc-MAA) SPECT 3-D dataset and CT scan was used to estimate the likely absorbed dose in normal liver and tumor tissue from 90Y microsphere brachytherapy (radioembolization). Monte Carlo algorithms were utilized to maximize true 3D dose estimates for each patient's unique liver and tumor geometry. Clinical correlation was completed regarding toxicity, imaging response, and complications as an independent measure of the software's usefulness in predicting radiation effects. Comparisons were made to MIRD, Body Surface Area method, and physician prescription for 90Y activity. Results: The software performed accurately in estimating absorbed dose in phantom testing. Patient data from 50 consecutive patients with metastatic tumors (26 colon, 24 neuroendocrine) to the liver receiving 59 radioembolization treatments were studied. The software estimate of median normal liver and tumor absorbed doses were 27.6 Gy and 41.2 Gy, respectively. Conclusions: The use of pretreatment 99mTc-MAA SPECT co-registered to a CT scan provides useful and unique data for a newly developed non-MIRD, Monte Carlo-based radiation dosimetry software program in 90Y microsphere brachytherapy. Software estimates of radiation dose preserving critical spatial information in the liver and tumors appeared reasonable based on clinical outcomes. Further testing and refinement of the software interface is ongoing with plans to distribute it to research organizations.


Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals


[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version