Dersleri yüzünden oldukça stresli bir ruh haline sikiş hikayeleri bürünüp özel matematik dersinden önce rahatlayabilmek için amatör pornolar kendisini yatak odasına kapatan genç adam telefonundan porno resimleri açtığı porno filmini keyifle seyir ederek yatağını mobil porno okşar ruh dinlendirici olduğunu iddia ettikleri özel sex resim bir masaj salonunda çalışan genç masör hem sağlık hem de huzur sikiş için gelip masaj yaptıracak olan kadını gördüğünde porn nutku tutulur tüm gün boyu seksi lezbiyenleri sikiş dikizleyerek onları en savunmasız anlarında fotoğraflayan azılı erkek lavaboya geçerek fotoğraflara bakıp koca yarağını keyifle okşamaya başlar

GET THE APP

Depolymerizing Activities of Aromatic Hydrocarbon Degrading Phyllosphere Fungi in Sri Lanka | OMICS International | Abstract
ISSN: 2155-6199

Journal of Bioremediation & Biodegradation
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Depolymerizing Activities of Aromatic Hydrocarbon Degrading Phyllosphere Fungi in Sri Lanka

Kannangara S*, Undugoda L, Rajapaksha N and Abeywickrama K

Department of Botany, Faculty of Science, University of Kelaniya, Kelaniya, Sri Lanka

*Corresponding Author:
S Kannangara
Department of Botany
University of Kelaniya, Kelaniya, Sri Lanka
Tel: +0112914480
E-mail: sagarikadpk@kln.ac.lk

Received date: October 05, 2016; Accepted date: October 20, 2016; Published date: October 22, 2016

Citation: Kannangara S, Undugoda L, Rajapaksha N, Abeywickrama K (2016) Depolymerizing Activities of Aromatic Hydrocarbon Degrading Phyllosphere Fungi in Sri Lanka. J Bioremediat Biodegrad 7:372. doi: 10.4172/2155-6199.1000372

Copyright: © 2016 Kannangara S, et al. This is an open-a ccess article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Application of aromatic hydrocarbon degrading fungi to bioremediate aromatic hydrocarbonic (AH) pollutants is a current trend and many research on the use of such fungi to remediate aromatic hydrocarbonic pollutants in temperate situations have been reported. Bioremediation of these hydrocarbons is through an array of lignolitic and non lignolitic extra cellular enzymes. Therefore, the present investigation attempts to assess lignolytic and non lignolytic enzyme activities of selected phyllosphere aromatic hydrocarbon degrading fungi during the aromatic hydrocarbon degradation. In a previous research aromatic hydrocarbon degrading fungi were isolated from ornamental leaf samples collected from highly urbanized and industrialized areas of Sri Lanka. These fungal species were then selected to evaluate their enzyme activities when degrading aromatic hydrocarbons. They were screened for their manganese dependent peroxidases (Mnp), Lignin peroxidases (Lip) and laccases enzyme activities. Most efficient naphthalene degrading fungi showed Mnp and Lip enzyme activities. The best naphthalene degrader, Penicillium oxalicum showed significantly higher Mnp (26 Uml-1 min-1) activity during naphthalene degradation process. However, phenanthrene degrading phyllosphere fungal strains showed higher laccase activities. Penicillium oxalicum showed significantly higher laccase activity during the phenanthrene degradation showing the same fungal species had different enzyme predominant pathways for different xenobiotics. Same fungal species performed differently for different AH substrates. Mnp was the predominantly used enzyme in the most efficient naphthalene degrading fungal species and phenanthrene degradation of them was manipulated by laccases. The promising results of the present investigation will broaden the perspective of ecofriendly practical application of the above fungal strains at environmental sites where contamination is caused by AHs especially, phenanthrene, naphthalene, toluene and xylene. Also this opens many avenues for conducting future research in the field of bioremediation and biodegradation.

Keywords

Google Scholar citation report
Citations : 7718

Journal of Bioremediation & Biodegradation received 7718 citations as per Google Scholar report

Journal of Bioremediation & Biodegradation peer review process verified at publons
Indexed In
  • CAS Source Index (CASSI)
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Open J Gate
  • Genamics JournalSeek
  • Academic Keys
  • JournalTOCs
  • ResearchBible
  • China National Knowledge Infrastructure (CNKI)
  • Ulrich's Periodicals Directory
  • Access to Global Online Research in Agriculture (AGORA)
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • SWB online catalog
  • Publons
  • Geneva Foundation for Medical Education and Research
  • MIAR
  • ICMJE
Share This Page
Top