alexa Performance Evaluation of Ethanol-Diesel Blend in Compression-Ignition Engine | OMICS International
ISSN: 2155-9821

Journal of Bioprocessing & Biotechniques
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Performance Evaluation of Ethanol-Diesel Blend in Compression-Ignition Engine

Yahuza I1*, Dandakouta H2 and Ibrahim ME3

1Department of Automobile Engineering, Abubakar Tafawa Balewa University, Bauchi, Nigeria

2Department of Mechanical/Production Engineering, Abubakar Tafawa Balewa University, Bauchi, Nigeria

3Department of Mechanical Engineering, Federal University of Technology, Yola, Nigeria

Corresponding Author:

Yahuza Ibrahim
Department of Automobile Engineering
Abubakar Tafawa Balewa University
Bauchi, Nigeria
Tel: 234-803-690-7285
E-mail: [email protected]

Received November 05, 2015; Accepted April 25, 2016; Published April 29, 2016

Citation: Yahuza I, Dandakouta H, Ibrahim ME (2016) Performance Evaluation of Ethanol-Diesel Blend in Compression-Ignition Engine. J Bioprocess Biotech 6:281. doi:10.4172/2155-9821.1000281

Copyright: © 2016 Yahuza I, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 

Abstract

Ethanol was produced from saw dust of Masonia wood by means of simultaneous saccharification and fermentation process. The Ethanol produced was blended with Diesel in different proportions. The fuel properties of the Ethanol-Diesel (ED) blends at different temperatures and load conditions were experimentally investigated. The properties determined were relative density, cloud point, pour point, flash point, viscosity and the calorific value. The Diesel Engine Test Bed (Petter: PJ2W-type, 7227/22.5 BS) was used with ED blends having 5, 10, 15 and 20% ethanol with respectively 95, 90, 85 and 80% diesel on a volume basis to know the performance of the blends. The experimental results of the engine’s performance which include the brake power, brake specific fuel consumption, brake thermal efficiency for the fuel blends were analyzed to know the suitability of using ED blend in Compression Ignition engine. The results show that both the relative density and viscosity of the blends decreased as the ethanol content in the blends was increased. All the blends were found to have the same cloud point of 5°C with that of diesel while their pour points vary and differ from that of diesel. All the blends have flash points 65% lower than that of diesel. The calorific values for ED5, ED10, ED15 and ED20 blends were 2, 3, 4 and 6% respectively less than that of diesel. The engine’s performance analysis indicated that there was an increase in brake thermal efficiency of the engine with increased proportion of ethanol in the fuel blends. The ED20 gave higher brake thermal efficiency than the diesel fuel at all load conditions. It was observed that at all loads conditions; the mass flow rate of ED20 was low so, resulting in decreased in specific fuel consumption. At all loads conditions, carbon dioxide emissions increased while hydrocarbon emissions decreased with increased amount of ethanol in the fuel blends, with ED20 showing the least emissions levels. Also, at all loads conditions, NOX emission of the blends was found to be higher than that of standard diesel due to the oxygen concentration and combustion timing. The results found showed that the ED20 (20% ethanol and 80% diesel) can be used in CI engine without any modification.

Keywords

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version