alexa Performance Simulation of Two-Bed Adsorption Refrigeration Chiller with Mass Recovery
ISSN: 2090-4541

Journal of Fundamentals of Renewable Energy and Applications
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Performance Simulation of Two-Bed Adsorption Refrigeration Chiller with Mass Recovery

Najeh Ghilen1,2*, Slimane Gabsi2, Riad Benelmir1 and Mohammed El Ganaoui1

1Faculty of Sciences and Technology, UIT Longwy Lab, University of Lorraine, France

2Research Unit Environment, Catalysis and Process Analysis, The National Engineering School of Gabes, Tunisia

*Corresponding Author:
Najeh Ghilen
Faculty of Sciences and Technology
Research Unit Environment
Catalysis and Process Analysis
The National Engineering School of Gabes, Tunisia
Tel: 21641527277
E-mail: [email protected]

Received Date: March 21, 2017; Accepted Date: April 18, 2017; Published Date: April 20, 2017

Citation: Ghilen N, Gabsi S, Benelmir R, Ganaoui ME (2017) Performance Simulation of Two-Bed Adsorption Refrigeration Chiller with Mass Recovery. J Fundam Renewable Energy Appl 7: 229. doi:10.4172/20904541.1000229

Copyright: © 2017 Ghilen N, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.



The technology of adsorption chiller is an efficient way of heat conversion. It can significantly reduce environmental pollution and improve energy efficiency. This paper deals with numerical study of refrigeration systems with silica gel/water pairs with mass recovery. The model is validated with experimental results from the ENERBAT platform. Numerical results are in good agreement with those of experiment. A process of mass recovery is added to study its the effect on the performances of the system. The effect of hot water temperature, cooling water temperature, chilled water temperature and cycle time, on the coefficient of performance (COP), the specific cooling capacity (SCP), the cycled mass, the evaporator outlet temperature and efficiency system are investigated in order to extrapolate the results in the Tunisian climate and to determine their optimum values able to maximize the performance of the system under analysis. The simulation calculation indicates a COP value of 0.7 with a driving source temperature of 85°C in combination with coolant inlet and chilled water inlet temperature of 40°C and 15°C, respectively. The most optimum adsorptiondesorption cycle time is approximately 1240s based on the performance from COP and SCP, achieving a SCP of 400 W/kg.


Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals


[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version