alexa Perineural versus Intravenous Dexamethasone for Prolongation of Multiple Nerve Blocks for Pain Relief after Total Knee Arthroplasty | OMICS International | Abstract
ISSN: 2167-0846

Journal of Pain & Relief
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Perineural versus Intravenous Dexamethasone for Prolongation of Multiple Nerve Blocks for Pain Relief after Total Knee Arthroplasty

Anatoli Stav1,2*, Leonid Reytman2,3, Michael-Yohay Stav4, Aksana Machluf5, Roger Sevi2,6 and Mohammed Tallas7

1Postanesthesia Care Unit, Hillel Yaffe Medical Center, Hadera, Israel

2Department of Medicine, Technion-Israel Institute of Technology, Haifa, Israel

3Department of Anesthesiology, Hillel Yaffe Medical Center, Hadera, Israel

4Assaf Harofeh Medical Center, Zerifin, Israel

5Hillel Yaffe Medical Center, Hadera, Israel

6Department of Orthopedics A, Hillel Yaffe Medical Center, Hadera, Israel

7Department of Orthopedics B, Hillel Yaffe Medical Center, Hadera, Israel

*Corresponding Author:
Anatoli Stav
Postanesthesia Care Unit, Hillel Yaffe Medical Center
Hadera, 38100, Israel
Tel: +972-522696680
Fax: +972-46334539
E-mail: [email protected]

Received date: June 03, 2017; Accepted date: June 20, 2017; Published date: June 26, 2017

Citation: Stav A, Reytman L, Stav MY, Machluf A, Sevi R, et al. (2017) Perineural versus Intravenous Dexamethasone for Prolongation of Multiple Nerve Blocks for Pain Relief after Total Knee Arthroplasty. J Pain Relief 6:293. doi:10.4172/2167-0846.1000293

Copyright: © 2017 Stav A, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Background: Multiple nerve blocks (MNB) provide excellent time-limited perioperative analgesia following total knee arthroplasty. Both perineural and systemic use of dexamethasone (DXM) as an adjuvant to local anesthetic prolong the duration of single-shot MNB. We hypothesized that preoperative perineural injection of DXM prolongs analgesia after MNB more than the same dose of intravenous (IV) DXM injection due to direct action on the nerves and not only by a systemic action mechanism.

Methods: This is a prospective, randomized, controlled and observer-blinded study. One hundred and nine patients were randomly assigned to one of three groups: Group (Gr) 1-perineural DXM+MNB, Gr 2-systemic IV DXM +MNB, Gr 3-control group, MNB without DXM. Postoperative variables including intensity of pain at rest and during motion, grade of sensory and motor block, opioid consumption, comfort time (the first analgesic request) were the primary end-points of investigation.

Results: Ninety patients completed the study protocol. Very low parameters of intensity of pain at rest and during motion, high grade of sensory and motor block were observed up to 12 hours after MNB performance in all three groups. Patients who received MNB with DXM perineurally or systemically, experienced superior pain relief and had reduced opioid consumption 24 hours post-block compared to the control group without differences between the two "dexamethasone" groups. There were no differences between groups at 36 and 48 hours post-block. Patients in the control group suffered from pain at rest and started treatment by any analgesics significantly earlier than patients from the two “dexamethasone” groups. No difference of comfort time was observed between Gr 1 and Gr 2. In the period between 24 and up to 36 hours the block’s effect (i.e. the effect of local anesthetic with adjuvant dexamethasone) gradually weakened and somewhere at 48 hours post-block, it passed almost completely.

Conclusions: Intravenous 8 mg dexamethasone is equivalent to perineural dexamethasone in prolonging the pain relief duration of an ultrasound guided single-shot multiple nerve block with bupivacaine and adrenaline following total knee arthroplasty.

Keywords

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version