alexa Persistent N-cadherin Expression Induced by Extended Epidermal Growth Factor Exposure Regulates Multicellular Aggregate Compaction and Sensitivity to Cisplatin
ISSN: 2161-0444

Medicinal Chemistry
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Persistent N-cadherin Expression Induced by Extended Epidermal Growth Factor Exposure Regulates Multicellular Aggregate Compaction and Sensitivity to Cisplatin

Sabrina L Samudio-Ruiz* and Laurie G Hudson

Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, USA

*Corresponding Author:
Sabrina Samudio-Ruiz, Ph.D
University of New Mexico
MSC09 5360, Albuquerque, NM 87120, USA
Tel: (505) 272-6932
Fax: (505) 272-0704
E-mail: [email protected]

Received date: March 19, 2014; Accepted date: April 14, 2014; Published date: April 16, 2014

Citation: Samudio-Ruiz SL, Hudson LG (2014) Persistent N-cadherin Expression Induced by Extended Epidermal Growth Factor Exposure Regulates Multicellular Aggregate Compaction and Sensitivity to Cisplatin. Med chem S1:005. doi:10.4172/2161-0444.S1-005

Copyright: © 2014 Samudio-Ruiz SL, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Objective: In ovarian cancer, activation of the epidermal growth factor receptor (EGFR) is associated with poor prognosis. The presence of EGFR activators in patient ascites fluid may cause constitutive EGFR activation thereby contributing to metastasis and/or resistance to therapy. Our goal was to identify alterations resulting from constitutive EGFR activation that influence cell behavior and drug sensitivity.

Methods: We used an in vitro model (OVCA 433 cells) to evaluate changes in mesenchymal marker levels and multicellular aggregate (MCA) formation following long term epidermal growth factor (EGF) treatment. We determined sensitivity to cisplatin following EGF treatment and evaluated the role of the mesenchymal marker, N-cadherin, in aggregate formation and sensitivity using siRNA.

Results: We found that EGFR activation led to phenotypic and functional changes in ovarian tumor cells that were retained after ligand was withdrawn (removal). Expression levels of the mesenchymal markers N-cadherin and vimentin were elevated in EGF treated and removal cells. This persistent increase in mesenchymal markers was associated with a significant increase in (MCA) compaction and cell spreading when MCAs were plated on collagen. N-cadherin silencing decreased MCA compaction and spreading in cells following extended exposure to EGF or in cells with high endogenous levels of N-cadherin. Furthermore, the compact MCA structure in EGF treated cells with increased N-cadherin expression conferred resistance to cisplatin and N-cadherin silencing largely restored cisplatin sensitivity.

Conclusion: Our results indicate that prolonged EGFR activation causes a persistent change in mesenchymal marker expression, which regulates compaction and drug sensitivity. The findings implicate N-cadherin as a key regulator of the EGFR-dependent functional changes in MCAs such as compaction, spreading and sensitivity to platinum-based chemotherapeutics. These findings suggest a mechanism by which persistent EGFR activation in the microenvironment may drive changes in ovarian cancer cells that contribute to the poor prognosis associated with EGFR activation.

Keywords

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version