alexa PI Controller Design for a Coupled Tank System Using LM
ISSN: 2157-7048

Journal of Chemical Engineering & Process Technology
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

PI Controller Design for a Coupled Tank System Using LMI Approach: An Experimental Study

Soumya Ranjan M*, Bidyadhar S and Subhojit G
Department of Electrical Engineering, National Institute of Technology Rourkela, Odisha, India
Corresponding Author : Soumya Ranjan M
Department of Electrical Engineering
National Institute of Technology Rourkela
Odisha-769 008, India
Tel: 9775194621
E-mail: [email protected]
Received: December 15, 2015 Accepted: December 25, 2015 Published: January 09, 2016
Citation: Soumya Ranjan M, Bidyadhar S, Subhojit G (2016) PI Controller Design for a Coupled Tank System Using LMI Approach: An Experimental Study. J Chem Eng Process Technol 7:266. doi:10.4172/2157-7048.1000266
Copyright: © 2016 Soumya Ranjan M, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Related article at Pubmed, Scholar Google


This paper presents a Linear Matrix Inequality (LMI) tuned PI controller for real-time control of a coupled-tank liquid level system. The proposed approach is based on the transformation of the PI controller design problem to a state feedback controller design problem, which is further solved using convex optimization approach. The model of the coupled tank system has been developed based on system identification technique that employs least square error method (LS) for parameter estimation. The proposed controller algorithm has been applied on the identified model. The performance of the proposed control algorithm has been compared with that of a Ziegler-Nichols tuned PI controller. From both the simulation as well as the experimental results, it is observed that the performance of the proposed PI control is more efficient than the widely used Ziegler-Nichols approach.


Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version