alexa Pilot Application of Magnetic Nanoparticle-Based Biosensor for Necrotizing Enterocolitis | OMICS International | Abstract
ISSN: 0974-276X

Journal of Proteomics & Bioinformatics
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Pilot Application of Magnetic Nanoparticle-Based Biosensor for Necrotizing Enterocolitis

Dokyoon Kim1#,Changlin Fu2#,Xuefeng B Ling2#,Zhongkai Hu2,Guozhong Tao2,Yingzhen Zhao2,Zachary J Kastenberg2,Karl G Sylvester2*,Shan X Wang1,3*

1Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA

2Department of Surgery, Stanford University, Stanford, CA 94305, USA

3Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA

#These authors contributed equally to this work

*Corresponding Author:
Karl G Sylvester
Department of Surgery
Stanford University, Stanford, CA 94305, USA
E-mail: [email protected]

Shan X Wang
Department of Electrical Engineering
Stanford University
Stanford, CA 94305, USA
Tel: (650)-427-9198
Fax: (650)-723-1154
E-mail: [email protected]

Received date: November 05, 2013; Accepted date: December 16, 2013; Published date: December 18, 2013

Citation: Kim D, Fu C, Ling XB, Hu Z, Tao G, et al. (2013) Pilot Application of Magnetic Nanoparticle-Based Biosensor for Necrotizing Enterocolitis. J Proteomics Bioinform S5:002. doi: 10.4172/jpb.S5-002

Copyright: © 2013 Kim D, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Background: Necrotizing Enterocolitis (NEC) is a major source of neonatal morbidity and mortality. There is an ongoing need for a sensitive diagnostic instrument to discriminate NEC from neonatal sepsis. We hypothesized that magnetic nanopartile-based biosensor analysis of gut injury-associated biomarkers would provide such an instrument.

Study design: We designed a magnetic multiplexed biosensor platform, allowing the parallel plasma analysis of C-reactive protein (CRP), matrix metalloproteinase-7 (MMp7), and epithelial cell adhesion molecule (EpCAM). Neonatal subjects with sepsis (n=5) or NEC (n=10) were compared to control (n=5) subjects to perform a proof of concept pilot study for the diagnosis of NEC using our ultra-sensitive biosensor platform.

Results: Our multiplexed NEC magnetic nanoparticle-based biosensor platform was robust, ultrasensitive (Limit of detection LOD: CRP 0.6 pg/ml; MMp7 20 pg/ml; and EpCAM 20 pg/ml), and displayed no cross-reactivity among analyte reporting regents. To gauge the diagnostic performance, bootstrapping procedure (500 runs) was applied: MMp7 and EpCAM collectively differentiated infants with NEC from control infants with ROC AUC of 0.96, and infants with NEC from those with sepsis with ROC AUC of 1.00. The 3-marker panel comprising of EpCAM, MMp7 and CRP had a corresponding ROC AUC of 0.956 and 0.975, respectively.

Conclusion: The exploration of the multiplexed nano-biosensor platform shows promise to deliver an ultrasensitive instrument for the diagnosis of NEC in the clinical setting.

Keywords

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version