Reach Us +44-1522-440391
Polymer Based PCF with High Nonlinearity and Low Bend Loss: A NewModeling | OMICS International | Abstract
ISSN: 2469-410X

Journal of Lasers, Optics & Photonics
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Polymer Based PCF with High Nonlinearity and Low Bend Loss: A NewModeling

Muduli N*

Gandhi Engineering College, Bhubaneswar, Odisha, India

*Corresponding Author:
Muduli N
Gandhi Engineering College
Bhubaneswar, Odisha, India
Tel: 073810 54131
E-mail: [email protected]

Received date: January 09, 2017; Accepted date: January 31, 2017; Published date: February 15, 2017

Citation: Muduli N (2017) Polymer Based PCF with High Nonlinearity and Low Bend Loss: A New Modeling. J Laser Opt Photonics 4:147. doi: 10.4172/2469-410X.1000147

Copyright: © 2017 Muduli N. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


The effect of ellipticity ratio on low bend loss, high nonlinearity, wideband high birefringence and low confinement loss in a hexagonal spiral thermoplastic polymer based PCF having air holes with Kerr nonlinearity is investigated. Moreover, the above all property are simulated initially with wide range of wavelength (for different value ellipticity ratio) and secondly with ellipticity ratio at an operating wavelength of 1.55 μm. Through the optimization of arrangement and diameter of elliptical air holes, the designed spiral PCF offers low bend loss, high nonlinearity depends on mode field area (As small as mode field area, increase the nonlinearity), high birefringence and nonzero dispersion for X/Y polarization within the wavelength range of 0.5 to 1.75 μm. These results seem to be most useful in optical communication.