alexa Polymerizing Bone Cement can Roughen a Polyethylene Bearing Surface on Total Hip Replacement A Surface Analysis
ISSN: 2167-7921

Journal of Arthritis
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Polymerizing Bone Cement can Roughen a Polyethylene Bearing Surface on Total Hip Replacement A Surface Analysis

Paul YF Lee*, Phillip Alderman and Paul Roberts

Welshbone, South Wales Orthopaedics Research Network, Wales, UK

*Corresponding Author:
Paul YF Lee
Welshbone, South Wales Orthopaedics Research Network, Wales, UK
Tel: +447764614688
E-mail: [email protected]

Received date: May 17, 2016; Accepted date: June 09, 2016; Published date: June 15, 2016

Citation: Lee PYF, Alderman P, Roberts P (2016) Polymerizing Bone Cement can Roughen a Polyethylene Bearing Surface on Total Hip Replacement – A Surface Analysis. J Arthritis 5:203. doi:10.4172/2167-7921.1000203

Copyright: © 2016 Lee PYF, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 

Abstract

The tribological behaviour of the bearing surface in hip arthroplasty is greatly influenced by its surface roughness. During cemented hip arthroplasty, bone cement may contaminate the bearing surface. Hence, the aim of this study was to investigate the effect of cement polymerization on a highly cross-linked polyethylene(HCLP) bearing surface as any process influences the surface roughness of the bearing surface can have potential long term effect on the wear rate. Three new HCLP liners were used. A map of the surface topography of each liner was obtained using a white light interferometric microscope at five different locations in accordance with the standard BSEN ISO 4288:1998. Bone cement was then applied to the bearing surface and allowed to polymerise, then removed and irrigated with saline. The surface roughness measurement procedure was repeated again for all samples. The Ra results showed a 21% increase in mean surface roughness after cement contamination (p=0.01). The average Ra value pre-contamination was 190 nm while post-contamination was 230 nm. There were also changes in the surface topography observed with 3D surface mapping. Our study indicates that bone cement contamination of the HCLP surface can significantly increase its surface roughness and alter its surface topography. Surgeons should be aware of this potentially serious effect on the bearing and be vigilant to avoid bone cement contamination during arthroplasty surgery.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords