alexa Population Analysis of Bacterial Samples for Individual Identification in Forensics Application | OMICS International | Abstract
ISSN: 2153-0602

Journal of Data Mining in Genomics & Proteomics
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Population Analysis of Bacterial Samples for Individual Identification in Forensics Application

John P Jakupciak1*, Jeffrey M Wells1, Jeffrey S Lin2 and Andrew B Feldman2

1Cipher Systems, 2661 Riva Road, Annapolis, MD 21401, USA

2The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Rd., Laurel, MD 20723, USA

*Corresponding Author:
John P Jakupciak
Cipher Systems, 2661 Riva Rd
Annapolis, MD 21401, USA
Tel: (410) 412-3326
Fax: (410) 897-1066
E-mail: [email protected]

Received Date: May 16, 2013; Accepted Date: August 12, 2013; Published Date: August 19, 2013

Citation: Jakupciak JP, Wells JM, Lin JS, Feldman AB (2013) Population Analysis of Bacterial Samples for Individual Identification in Forensics Application. J Data Mining Genomics Proteomics 4:138.doi:10.4172/2153-0602.1000138

Copyright: © 2013 Jakupciak JP, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Biodefense preparedness begins with the ability to detect and respond to bio-threats, based on accurate interpretation of genetic information with sophisticated, yet easy-to-use bioinformatics tools. Microbial forensics further enables attribution of microbial pathogen samples back to a suspected source. Sample characterization and traceability back to source are dependent on genome identification of specific targets within samples, comprehensive analysis of mixtures of populations’ present, and detection of major/minor variations in the identified genomes and comparison of sample genetic profile against other samples. Commercial Next Generation Sequencing (NGS) platforms offer the promise of dramatically higher detection sensitivity and resolution of forensic DNA samples than is possible with methods in current use. Before applying these technologies for forensic analyses of bacterial samples, however, it is critical to fully elucidate the benefits, caveats and pitfalls of NGS for hypothesis testing in comparative analyses, as ultimately this will be required for NGS use both as an investigative tool and tool for attribution in courts of law.
Methods: We developed and evaluated novel probabilistic algorithms to process metagenomic sequence data from direct sample sequencing to identify genomes present in mixtures.
Results: We present a pipeline for reference-free sample-to-sample comparisons to improve target characterization beyond one microorganism to characterization of comprehensive sample content. Our tools strengthen statistical confidence to trace the ancestry of samples and attribute samples to source with probabilistic certainties on many targets instead of a single genome.
Conclusion: This study developed a novel reference free, bioinformatics strategy to account for and identify genetic diversity in samples. Sequence variants must be non-arbitrarily confirmed in both forward and reverse reads at a rate above the background noise level of sequencer machine error. A similarity distance metric compares genomes within a range of near relationships. Using sequence data from bio-threat agents, we successfully attributed known related strains together, and excluded near relation of known unrelated strains. The major strengths of this forensic method are the non-arbitrary determinations of data validation and relatedness metrics, as well as the ability to compare microbial genomes with or without a reference database of related genomes.


Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

+1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A


[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals


porn sex

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

Gaziantep Escort

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A


[email protected]

1-702-714-7001Extn: 9037


James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

mp3 indir

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals


Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T


[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
Leave Your Message 24x7