GET THE APP

..

Environmental & Analytical Toxicology

ISSN: 2161-0525

Open Access

Post-Harvest Management of Phytoremediation Technology

Abstract

Monalisa Mohanty

Post-harvest management of contaminated phytoremediation byproducts for combating the problem of heavy metal contamination is of utmost significance in recent years. Soil fertility is greatly affected by expensive conventional remedial technologies and subsequently causes negative impacts on the ecosystem. Phytoremediation proved to be a cost effective, environment friendly and aesthetically pleasing approach which is most suitable for developing countries. In spite of these benefits phytoremediation technique contributes huge quantities of contaminated materials to the environment and creates further pollution problems. Post-harvest management of these byproducts through advanced techniques like composting and compaction, combustion and gasification, phytomining and pyrolysis is essential. A lot of contaminated biomass is produced during phytoremediation processes, which uses high biomass weeds. So it needs proper disposal and management to restrict the passage of contaminants into the food chain. The high biomass plant selected for phytoremediation should be non-edible, disease resistant and tolerant plants, which can provide renewable energy. Post-harvest management of phytoremediation technique is an alternative for biomass to biofuel conversion. This enhances the practicability of phytoremediation technology. Postharvest strategies are essential with preharvest approaches for developing a sustainable phytoremediation technology.

PDF

Share this article

Google Scholar citation report
Citations: 6818

Environmental & Analytical Toxicology received 6818 citations as per Google Scholar report

Environmental & Analytical Toxicology peer review process verified at publons

Indexed In

 
arrow_upward arrow_upward