alexa Potential Therapeutic Effect of Hematopoietic Stem Cells on Cerebellar Ataxia in Adult Female Rats Subjected to Cerebellar Damage by Monosodium Glutamate | Abstract
ISSN: 2155-9562

Journal of Neurology & Neurophysiology
Open Access

Like us on:

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Potential Therapeutic Effect of Hematopoietic Stem Cells on Cerebellar Ataxia in Adult Female Rats Subjected to Cerebellar Damage by Monosodium Glutamate

Horeya E Korayem1, Mohamed Abdo2, Magda M Naim1, Soha E Yones3 and Somaya Hosny1*

1Histology department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt

2Physiology department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt

3Clinical Pathology department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt

Corresponding Author:
Somaya Hosny
Faculty of Medicine
Suez Canal University,Ismailia, Egypt
Tel: +201223773789;
E-mail: [email protected]

Received date: August 29, 2014; Accepted dat: October 13, 2014; Published date: October 17, 2014

Citation: Korayem HE, Abdo M, Naim MM, Yones SE, Hosny S (2014) Potential Therapeutic Effect of Hematopoietic Stem Cells on Cerebellar Ataxia in Adult Female Rats Subjected to Cerebellar Damage by Monosodium Glutamate. J Neurol Neurophysiol 5:240. doi:10.4172/2155-9562.1000240

Copyright: © 2014 Korayem HE, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Background: Research evidence has indicated that monosodium glutamate (MSG) consumption produces
certain deleterious effects on the cerebellum of adult rats at high doses which can consequently affect cerebellar
function. The use of stem cells in nervous system disorders is a growing field, which in numerous reports has shown
promising results in the restoration of neurological function.
Aim: To compare the effect of injection of human umbilical cord blood CD34+ stem cells versus CD34- fraction in
a rat model of cerebellar damage induced by monosodium glutamate.
Methods: Forty adult female albino rats were equally randomized into 4 groups: group I served as control,
group II received MSG, group III received MSG followed by CD34+ stem cell separated from umbilical cord blood
of human male fetuses, group IV received MSG followed by the CD34- fraction. At the end of the experiment, all
rats were subjected to assessment of motor function, histological and immunohistochemical techniques as well as a
polymerase chain reaction analysis of male-specific Sry gene.
Results: Group II showed a significant decrease in the mean number of Purkinje cells and cells of the molecular
layer. Nissl’s granules and length of dendrites of Purkinje cells were markedly decreased. Marked increase of GFAP
immunoexpression in astrocytes was also detected. Group III stem cells showed improvement in motor function after
4 weeks of treatment. The CD34- group (IV) showed more increase in the number of cells in the molecular, granular
and Purkinje cell layers as well as an increase in Nissl’s granules and Purkinje cell dendrite length compared to
CD34+ stem cell group (III). There was also a significant decrease in optical density of GFAP immunoexpression of
the CD 34- group compared to both MSG and CD34+ groups. The Sry gene was not detected in either of the CD34+
and CD34- groups implying that the improvement happened without homing of stem cells in the cerebellum.
Conclusion: Both CD34 -ve and CD34+ve stem cells improved cerebellar structure and function against damage
induced by monosodium glutamate; however CD34- stem cells showed more improvement than CD34+ stem cells.

Keywords

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
Leave Your Message 24x7