alexa Prediction of Effluent Treatment Plant Performance in a Diary Industry Using Artificial Neural Network Technique
ISSN: 2165-784X

Journal of Civil & Environmental Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Prediction of Effluent Treatment Plant Performance in a Diary Industry Using Artificial Neural Network Technique

Amrutha Vijayan* and Gayathri S Mohan

KMCT College of Engineering for Women, Kozhikode, India

*Corresponding Author:
Amrutha Vijayan
KMCT College of Engineering for Women
Kozhikode, India
Tel: +918281786033
E-mail: [email protected]

Received Date: October 28, 2016; Accepted Date: November 07, 2016; Published Date: November 09, 2016

Citation: Vijayan A, Mohan GS (2016) Prediction of Effluent Treatment Plant Performance in a Diary Industry Using Artificial Neural Network Technique. J Civil Environ Eng 6:254. doi: 10.4172/2165-784X.1000254

Copyright: © 2016 Vijayan A, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 

Abstract

Use of Artificial Neural Network (ANN) models is progressively increasingly to predict waste water treatment plant variables. This forecasting helps the operators to take corrective action and manage the process accordingly as per the norms. It is a proved useful device to surmount a few of the limitations of usual mathematical models for wastewater treatment plants for the reason that of their complex mechanisms, changing aspects-dynamics and inconsistency. This analysis considers the relevance of ANN techniques to predict influent and effluent biochemical oxygen demand (BOD), Chemical Oxygen Demand (COD), Total suspended solids (TSS) for effluent treatment process. Here, a feed forward ANN, using a back propagation learning algorithm, has been applied for predicting effluent BOD, COD, TSS. After collecting historical plant data from effluent treatment plant at Diary industry. The suitable architecture of the neural network models was ascertained after several steps of training and testing of the models. Efficiencies of the plant for BOD, COD, TSS were 85%,78%,75% respectively. The ANN based models were established to offer an efficient and a robust tool in prediction and modelling.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords