alexa Prediction of Global Solar Radiation Using Artificial Neural Network
ISSN ONLINE(2278-8875) PRINT (2320-3765)

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Prediction of Global Solar Radiation Using Artificial Neural Network

Rashmi Jain1 Bhawana Goel2
  1. Assistant professor, Dept. of Electrical Engg., YMCA University of Science and Technology, Faridabad, India
  2. PG Student [PSD], Dept. of EL, YMCA University of Science and Technology, Faridabad, India
Related article at Pubmed, Scholar Google
 

Abstract

Prediction of solar radiation is done by Artificial Neural Network (ANN) fitting tool. For training and testing the ANN solar radiation data of different cities with different climatic conditions are used. The analysis used is Levenberg-Marquard (LM) algorithm. The ANN model results are compared with measured data on the basis of root mean square error (RMSE) and mean bias error (MBE). For Indian region, it is found that RMSE in the ANN model varies 0.0486–3.562. For the study, a multilayer feed forward (MLFF) neural network based on back propagation algorithm was developed, trained, and tested to predict global solar radiation for different cities of India. As the input parameters various geographical, solar and meteorological parameters of different locations with diverse climatic conditions were used. The main objective of this study is to review Artificial Neural Network (ANN) based techniques to identify suitable methods available in the literature for solar radiation prediction and to identify research gaps. The study shows that ANN techniques predict solar radiation more accurately in comparison to other (conventional) methods. We will found that the prediction accuracy of ANN models is dependent on input parameter combinations, training algorithm and architecture configurations.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords