GET THE APP

..

Journal of AIDS & Clinical Research

ISSN: 2155-6113

Open Access

Prediction of High Level of Multiple Drug Resistance Mutations in HIV-1 Subtype C Reverse Transcriptase Gene among First Line Antiretroviral-Experienced Virological Failure Patients from North India Using Genotypic and Docking Analysis

Abstract

Jaideep S Toor, Rajender Kumar, Prabha Garg, Aman Sharma and Sunil K Arora

Background: Virologic failures and development of drug resistance can result in reduced treatment options in HIV infection.

Methods: RT sequence of HIV-1 subtype C isolates from 122 Antiretroviral Therapy (ART) naive and 13 virological and first line regimen failures from North India were analyzed. Mutations were defined according to Stanford Drug Resistance data base. A three dimensional HIV-1 subtype C specific computational model of RT was created from consensus sequences from naïve patients to analyze mutations in therapy failures. CD4 count and viral load were measured to analyze the disease status and subtyping was done using Genotyping NCBI HIV subtyping tool.

Results: All thirteen isolates from first-line ART-failure patients had mutations effecting susceptibility to RTI drugs when analyzed using Stanford DR HIV-1 database. The most common NRTI resistance mutations were in positions 118, 184, 210 and 215 indicating the possibility of high level resistance to Lamivudine (3TC) and Emtricitabine (FTC) in 92.3% of isolates. Common NNRTI resistance mutations were identified at position 98, 101, 103, 181 and 190 indicating a high level resistance to Nevirapine (NVP) in 100% therapy failures, while affecting the susceptibility to EFV in 76.92%. Energy scores were calculated after docking of various NRTIs on our newly proposed model based on the three dimensional structure of local wild type reverse transcriptase (RT) of subtype C. The presence of V75M mutation in one of the isolates (SK-206) seem to be partially neutralizing the resistance effect of mutations 118I, 184V, 210W, and 215Y for Stavudine (D4T), Didanosine (DDI) and FTC while 75M decreases the susceptibility of Zidovudine (AZT) (ΔG=0.87), causing high level of resistance.

Conclusion: The data suggest that the proposed model was successful in predicting the resistance/susceptibility to various RTIs based on docking energy scores taking into consideration the cumulative effect of all the mutations together.

PDF

Share this article

Google Scholar citation report
Citations: 5061

Journal of AIDS & Clinical Research received 5061 citations as per Google Scholar report

Journal of AIDS & Clinical Research peer review process verified at publons

Indexed In

 
arrow_upward arrow_upward