alexa Preparation and characterization of Al-doped Zinc Oxid
ISSN ONLINE(2278-8875) PRINT (2320-3765)

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Preparation and characterization of Al-doped Zinc Oxide films deposition by Ion beam assisted Molecular Beam Epitaxy

Se-Young Choi1, Kyoon Choi2 and Sung Jin Kim3
  1. Assistant professor, School of Advanced Materials Science and Engineering College, Yonsei University, Seoul, 120-749, South Korea
  2. Assistant professor, Dept of Icheon branch KICET,(Korea Institute of Ceramic Engineering and Technology), Icheon 467-843, South Korea
  3. Yonsei University graduate student, School of Advanced Materials Science and Engineering College, Yonsei University, Seoul, 120-749, South Korea
Related article at Pubmed, Scholar Google
 

Abstract

Al-doped ZnO Thin Films were deposited on glass Substrates at room temperature by Ion beam assisted Molecular Beam Epitaxy deposition. Crystal linty, Microstructure, Surface Roughness, electrical and optical prosperities of thin films were investigated as function of deposition parameter such as ion energy. The microstructure of Al-doped ZnO Crystalline films on amorphous glass Substrates were closely related to oxygen Ion energy bombardment on the growing Surface of the film may be divided into two Categories : 1) The enhancement of atom Mobility at low energetic Ion bombardment. 2) The surface damage by radiation damage at high energetic Ion bombardment. Large of the sizes grain structure was obtained in the films deposited at 300eV. With Increasing the Ion energy to 600eV, large of the sizes grain structure was changed into the grain structure. At the high energy Ion bombardment of 600eV, however, the only grain structure was observed. The electrical properties of the deposited films were significantly related to the change of microstructure and Crystal linty. The Al-doped ZnO films with the large of the sizes grain structure have the good electrical properties than those with the grain structure, because the grain boundary scattering was reduced in the large sizes structure compare with the small size grains. The optical photoluminescence of Al-doped ZnO Films was dependent on a grain size.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords