alexa Profiling the Lipid Raft Proteome from Human MEC1 Chron
ISSN: 0974-276X

Journal of Proteomics & Bioinformatics
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Profiling the Lipid Raft Proteome from Human MEC1 Chronic Lymphocytic Leukemia Cells

Munther Alomari1, Swetlana Mactier1, Kimberley L. Kaufman1, O. Giles Best2, Stephen P. Mulligan1,2 and Richard I. Christopherson1*

1School of Molecular Bioscience, University of Sydney, Sydney, NSW 2006, Australia

2Department of Haematology, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW 2065, Australia

*Corresponding Author:
Richard I. Christopherson
School of Molecular Bioscience
University of Sydney
Sydney, NSW 2006, Australia
Tel: 61-2-9351-6031
Fax: 61-2-9351-4726
E-mail: [email protected]

Received Date: January 22, 2014; Accepted Date: March 17, 2014; Published Date: March 19, 2014

Citation: Alomari M, Mactier S, Kaufman KL, Best OG, Mulligan SP, et al. (2014) Profiling the Lipid Raft Proteome from Human MEC1 Chronic Lymphocytic Leukemia Cells. J Proteomics Bioinform S7: 005.doi: 10.4172/jpb.1000307

Copyright: © 2014 Alomari M, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.



Lipid rafts are specialized micro-domains located in the outer plasma membrane of cells and play important roles in various cellular functions, including cell signalling, secretory and endocytic pathways. Cell surface profiling, in particular the lipid raft proteome, has attracted interest in oncology due to the potential use of raft proteins as novel targets for diagnostics and therapeutics. Three different methods have been used to identify the lipid raft proteome from the human chronic lymphocytic leukemia (CLL) cell line MEC1. Firstly, lipid raft proteins were enriched and identified using sucrose gradient ultracentrifugation and 2D liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). To confirm protein localization to the lipid raft, proteomes were compared before and after cholesterol depletion by methyl-β-cyclodextrin (MβCD) using isobaric tags for relative and absolute quantitation (iTRAQ)-labeling coupled to 2D LC-MS/MS. Lipid raft proteins were also identified by immuno-precipitation of crosslinked CD20, a tetraspanin protein that translocates to lipid raft following treatment with the therapeutic antibody, rituximab. In total, 643 proteins were found in lipid rafts of CLL cells (580 following sucrose gradient ultracentrifugation, 181 depleted by MβCD and 199 isolated by immunoprecipitation) and 64 proteins were identified by all 3 methods). These data represents the first comprehensive profile of the lipid raft proteome in CLL cells and includes 30 proteins with no previous known association to the lipid raft. These proteins may represent novel diagnostic and therapeutic targets for CLL.


Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version