alexa Protective Role of Stem Cell Derived Extracellular Vesicles in an In Vitro Model of Hyperglycemia-Induced Endothelial Injury | OMICS International | Abstract
ISSN: 2157-7013

Journal of Cell Science & Therapy
Open Access

Like us on:

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Short Communication

Protective Role of Stem Cell Derived Extracellular Vesicles in an In Vitro Model of Hyperglycemia-Induced Endothelial Injury

Chiara Gai1, Yonathan Gomez1, Ciro Tetta2, Maria Felice Brizzi1,3 and Giovanni Camussi1*

1Department of Medical Sciences, University of Torino, Italy

2Unicyte AG, Oberdorf NW, Switzerland

32i3T, Society for the Management of Enterprise Incubator and the Technology Transfer, Scarl University of Torino, Italy

*Corresponding Author:
Giovanni Camussi
Department of Medical Sciences
University of Torino, Italy
Tel: +390116709588
Fax: +39 0116631184
E-mail: [email protected]

Received date: March 06, 2017; Accepted date: March 17, 2017; Published date: March 20, 2017

Citation: Gai C, Gomez Y, Tetta C, Brizzi MF, Camussi G (2017) Protective Role of Stem Cell Derived Extracellular Vesicles in an In Vitro Model of Hyperglycemia-Induced Endothelial Injury. J Cell Sci Ther 8:264. doi:10.4172/2157-7013. 1000264

Copyright: © 2017 Gai C, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Background: Adipose and bone marrow derived mesenchymal stem cells are two populations of multipotent adult stem cells with immunosuppressive, anti-inflammatory, and regenerative properties. It has been previously described that extracellular vesicles (EVs) derived from stem cells possess pro-regenerative and pro-angiogenic abilities. Hyperglycemia is a pathological condition affecting diabetic patients. Long term effects of hyperglycemia are endothelial dysfunction and vascular lesions leading to diabetic microangiopathy. The aim of the present study was to evaluate whether stem cell-derived EVs may inhibit endothelial cells dysfunction induced by hyperglycemia to mimic human microangiopathy.

Methods: We set up an in vitro hyperglycemic model by culturing human microvascular endothelial cells in hyperglycemic constant or intermittent conditions for 7 days, in order to mimic a chronic damage. At day 5, endothelial cells were incubated with adipose and mesenchymal stem cell-derived EVs or vehicle alone for 48 hr. At day 7, we evaluated apoptosis, oxidative stress, and capillary-like formation ability on Matrigel.

Results: Intermittent and constant high glucose models significantly decreased endothelial cell proliferation, increased number of apoptotic cells, promoted oxidation of intercellular proteins, and reduced capillary-like structure formation. Treatment with both kinds of EVs significantly restored proliferation, inhibited apoptosis and oxidation, and restored capillary-like formation.

Conclusions: The results of the present study demonstrate that adipose and bone marrow mesenchymal stem cell-derived EVs may inhibit the endothelial dysfunction induced by high glucose concentration, which mimic diabetic microvascular injury.

Keywords

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

+1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
Leave Your Message 24x7