alexa Proteome Biomarkers in Xylem Reveal Pierce′s Dise
ISSN: 0974-276X

Journal of Proteomics & Bioinformatics
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Proteome Biomarkers in Xylem Reveal Pierce′s Disease Tolerance in Grape

Ramesh Katam*, Kundai Chibanguza, Lekan M Latinwo and Danyel Smith

Molecular and Cellular Biology Laboratory, Department of Biological Sciences, Florida A&M University FL USA

*Corresponding Author:
Ramesh Katam
1530 MLK Blvd Jones Hall 214
Department of Biological Sciences
College of Science and Technology
Florida A&M University, Tallahassee FL 32307
Tel: (850) 412-5189
E-mail: [email protected]

Received date: July 13, 2015 Accepted date: September 24, 2015 Published date: September 30, 2015

Citation: Katam R, Chibanguza K, Latinwo LM, Smith D (2015) Proteome Biomarkers in Xylem Reveal Pierce’s Disease Tolerance in Grape. J Proteomics Bioinform 8: 217-224. doi: 10.4172/jpb.1000372

Copyright: © 2015 Katam R, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.



Pierce’s disease (PD) is a significant threat to grape cultivation and industry. The disease caused by bacterium Xylella fastidiosa clogs xylem vessels resulting in wilting of the plant. PD-tolerant grape genotypes are believed to produce certain novel components in xylem tissue that help them to combat invading pathogens. Research has been aimed at characterizing the uniquely expressed xylem proteins by PD-tolerant genotypes. The objectives were to i) compare and characterize Vitis xylem proteins differentially expressed in PD-tolerant and PD-susceptible cultivars and, ii) identify xylem proteins uniquely expressed in PD-tolerant genotypes. A high throughput two-dimensional gel electrophoresis of xylem proteins from three Vitis species identified more than 200 proteins with pIs 3.0 to 9.0 and molecular weights of 20 to 75 kDa. The differentially expressed proteins were then excised and analyzed with MALDI/TOF mass spectrometer. The mass spectra were collected and protein identification was performed against the Viridiplantae database using Matrix Science algorithm. Proteins were mapped to the universal protein resource to study gene ontology. Comparative analysis of the xylem proteome of three species indicated the highest number of proteins in muscadine grape, followed by Florida hybrid bunch and bunch grape. These proteins were all associated with disease resistance, energy metabolism, protein processing and degradation, biosynthesis, stress related functions, cell wall biogenesis, signal transduction, and ROS detoxification. Furthermore, β-1, 3-glucanase, 10-deacetyl baccatin III-10-O-acetyl transferase-like, COP9, and aspartyl protease nepenthesin precursor proteins were found to be uniquely expressed in PD-tolerant muscadine grape, while they are absent in PD-susceptible bunch grape. Data suggests that muscadine and Florida hybrid bunch grapes express novel proteins in xylem to overcome pathogen attack while bunch grape lacks this capability, making them susceptible to PD.


Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals


business[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version